

Real-time Laser Scanner for Autonomous IMR Applications

May 24, 2019 Dr. Narcís Palomeras Dr. Pere Ridao Dr. Albert Palomer PhD. Khadidja Himri PhD. Dina Youakim https://cirs.udg.edu/

Underwater Robotics Perception – ICRA'19 Workshop GIRONA UNDERWATER VISION AND ROBOTICS LAB

Underwater Robotics Perception – ICRA'19 Workshop GIRONA 500 & SPARUS II AUVs

Universitat de Girona

KEY POINTS

- 500 m Rated
- Hovering
- Light Weight (140 Kg)
- Open Payload
- Open Software (ROS)
- Affordable

- DGPS/USBL/DVL/IMU
- Wifi/Acoustic Modem
- Wifi buoy
- Flasher Light
- Central hooks
- GUI
- **HIROS**

KEY POINTS

- Efficient hydrodynamics
- Hovering
- Man Portable AUV (52 Kg)
- Open Payload
- Open Software (ROS)
- Affordable

- DGPS/USBL/DVL/IMU
- Wifi/Acoustic Modem
- Wifi buoy
- Flasher Light
- 3 deployment hooks
- 200 m rated
 - **III**ROS

Underwater Robotics Perception – ICRA'19 Workshop

Goal: Develop a real time laser scanner for IMR applications

To be used for:

Object detection

- Planning
- Exploration
- Inspection
- Localization
- Mapping
- ...

Underwater Robotics Perception – ICRA'19 Workshop Underwater laser scanner: State of the art

	Variable resolution	High scan speed	Flat viewport	Laser deformation model
[2G Robotics]	S	•	S	•••
[Inglis et al., 2012]	S	•	S	8
[Massot and Oliver 2014]	8	S	S	8
[Prats et al., 2012]	S	8	S	8
[Bleier and Nuchter 2017]	S	8	S	8
[Hildebrandt et al., 2008]	S	8	8	8
[Nakatani et al., 2011]	S	8	8	8
[Chantler et al., 1997]	S	S	S	••••
[Chi et al., 2016]	S	S	S	8
[Kocak et al., 1999]	O	S	•	•

[Hildebrandt et al., 2008]

[2G Robotics]

[Massot-Campos and Oliver-Codina 2014]

[Chi et al., 2016]

Underwater Robotics Perception – ICRA'19 Workshop Underwater laser scanner: Our approach

- Steering laser (camera fixed)
- Scan time 0.1-2s
- Laser scanning angle 80°

Underwater Robotics Perception – ICRA'19 Workshop

Underwater Robotics Perception – ICRA'19 Workshop

Underwater laser scanner: Sensor model

Universitat

de Girona

Underwater Robotics Perception – ICRA'19 Workshop

Underwater Robotics Perception – ICRA'19 Workshop

Underwater Robotics Perception – ICRA'19 Workshop

Underwater Robotics Perception – ICRA'19 Workshop

- Camera intrinsic parameters
- Laser model: ${}^{\{W\}}t_{\{L\}}$
- Mirror-galvanometer model: $\Pi = \begin{bmatrix} \rho_s & \delta \end{bmatrix}^{\{W\}} t_{\{M\}}$
- Camera viewport: $\Omega_C = \begin{bmatrix} \{W\} \\ \pi_C & t_C \end{bmatrix}$

• Laser viewport:
$$\Omega_L = \begin{bmatrix} \{W\} \\ \pi_L & t_L \end{bmatrix}$$

Underwater laser scanner: Calibration

- Camera calibration
 - Camera parameters f_x f_y c_x c_y
 - Camera distortion $k_1, k_2, p_1, p_2, k_3 \dots$
- Laser calibration ${}^{\{W\}}m{t}_{\{M\}},\,{}^{\{W\}}m{t}_{\{L\}},\delta,
 ho_{S}$
- Camera viewport calibration

 π_C, t_c

Laser viewport calibration

 π_L, t_L

Underwater Robotics Perception – ICRA'19 Workshop Underwater laser scanner: Calibration

In air (no viewport)

- Camera calibration
 - Camera parameters f_x f_y c_x c_y
 - Camera distortion

$$k_1, k_2, p_1, p_2, k_3 \dots$$

Universitat

de Girona

• Laser calibration
$${}^{\{W\}}\boldsymbol{t}_{\{M\}}, {}^{\{W\}}\boldsymbol{t}_{\{I\}}, \delta, \rho_{s}$$

• Camera viewport calibration
$$\pi_c, t_c$$

• Laser viewport calibration
$$\pi_L, t_L$$

Underwater (with viewport)

Underwater laser scanner: Calibration

- Camera calibration
 - Camera parameters f_x f_y c_x c_y
 - Camera distortion $k_1, k_2, p_1, p_2, k_3 \dots$

• Laser calibration $\{W\}_{t_{\{M\}}}, \{W\}_{t_{\{M\}}}, \delta,$

- Camera viewport calibration π_{c}, t_{c}
- Laser viewport calibration π_L , t_L

Underwater laser scanner: Calibration

- Camera calibration
 - Camera parameters f_x f_y c_x c_y
 - Camera distortion $k_1, k_2, p_1, p_2, k_3 \dots$
- Laser calibration ${}^{\{W\}} t_{\{M\}}, \, {}^{\{W\}} t_{\{L\}}, \delta,
 ho_{s}$
- Camera viewport calibration π_{c}, t_{c}
- Laser viewport calibration π_L , t_L

Laser calibration data generation

- Project the laser onto different projection planes: 1..*i*..*m*
- Project the laser for different mirror angles: 1..*j*..*n*
- For each projection plane-mirror angle save the laser pixels u_{i,j,k}: 1..k..o
- Add reference frame t_i to each projection plane
- Compute projection planes π_{p_i}
- Compute calibration points $p_{i,j,k}$ intersecting each $u_{i,j,k}$ with its projection plane π_{p_i}

Underwater laser scanner: Calibration

- Laser plane π_l
- Mirror pose ${}^{\{W\}}\boldsymbol{t}_{\{M\}}$
- Mirror step ρ_s
- Rotation distance $\delta = 0$

Laser calibration: Simplified model

Laser pose

- For each $P_{s_j}^{\uparrow}$ and $P_{s_j}^{\downarrow}$ compute the laser ray $r_{s_j}^{\uparrow}$ and $r_{s_j}^{\downarrow}$
- Reflect each $r_{s_j}^{\uparrow}$ and $r_{s_j}^{\downarrow}$ onto its corresponding mirror plane π_{s_j} to obtain $r_{s_j}^{\uparrow-}$ and $r_{s_j}^{\downarrow-}$
- Estimate the translation part of ${}^{\{W\}}t_{\{L\}}$ by finding the closest to all $r_{s_j}^{\uparrow-}$ and $r_{s_j}^{\downarrow-}$ on π_l
- Set the rotation part of ${}^{\{W\}}t_{\{L\}}$ aligning \vec{z} to n_l and \vec{y} to the direction of the intersection of π_l and π_{s_0}

 ${}^{\{W\}}\boldsymbol{R}_{\{M\}} = \begin{bmatrix} \boldsymbol{n}_l \times (\boldsymbol{n}_l \times \boldsymbol{n}_{s_0}) & \boldsymbol{n}_l \times \boldsymbol{n}_{s_0} & \boldsymbol{n}_l \end{bmatrix}$

Underwater laser scanner: Calibration

- Camera calibration
 - Camera parameters f_x f_y c_x c_y
 - Camera distortion $k_1, k_2, p_1, p_2, k_3 \dots$
- Laser calibration ${}^{\{W\}} \boldsymbol{t}_{\{M\}}, {}^{\{W\}} \boldsymbol{t}_{\{L\}}, \boldsymbol{\delta}, \boldsymbol{\rho}_{s}$
- Camera viewport calibration

π_C, t_c

• Laser viewport calibration π_L , t_L

Camera viewport $\Omega_C = \begin{bmatrix} \pi_C & t_C \end{bmatrix}$

Multiple underwater view of a calibration pattern

Camera viewport $\Omega_C = \begin{bmatrix} \pi_C & t_C \end{bmatrix}$

- Multiple underwater view of a calibration pattern
- Pattern initial guess: Solve PnP
- Viewport initial guess: CAD design
- Compute error for each point of the calibration pattern j = 1 .. n
- Refine viewport Ω_C and calibration pattern positions *T* using all images of the calibration pattern *i* = 1..*m*

$$[\Omega_C \quad \boldsymbol{T}] = \operatorname*{argmin}_{[\Omega_C \quad \boldsymbol{T}]} \sum_{i=1}^{m} \sum_{j=1}^{n} \mathrm{d} \left({}^{\{W\}} \boldsymbol{t}_{\{O\},i} \oplus \boldsymbol{p}_j, \ \boldsymbol{r}_{\boldsymbol{u},2,i,j} \right)$$

Underwater laser scanner: Calibration

- Camera calibration
 - Camera parameters f_x f_y c_x c_y
 - Camera distortion $k_1, k_2, p_1, p_2, k_3 \dots$
- Laser calibration ${}^{\{W\}}\boldsymbol{t}_{\{M\}}, {}^{\{W\}}\boldsymbol{t}_{\{L\}}, \boldsymbol{\delta}, \boldsymbol{\rho}_{S}$
- Camera viewport calibration π_c, t_c
- Laser viewport calibration

 π_L, t_L

Laser viewport $\Omega_L = \begin{bmatrix} \pi_L & t_L \end{bmatrix}$

- Same type of dataset as in air laser calibration
- Laser viewport initial guess: CAD design
- Estimate position of projection
- Compute calibration point $p_{i,j,k}$
- Compute point using ray-ray triangulation p⁺_{i,j,k}

٠

Refine the laser viewport $\Omega_L = \underset{\Omega_L}{\operatorname{argmin}} \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^o \boldsymbol{p}_{i,j,k}^+ - \boldsymbol{p}_{i,j,k}$

Underwater laser scanner: Calibration

- Camera calibration
 - Camera parameters f_x f_y c_x c_y
 - Camera distortion $k_1, k_2, p_1, p_2, k_3 \dots$
- Laser calibration ${}^{\{W\}}m{t}_{\{M\}},\,{}^{\{W\}}m{t}_{\{L\}},\delta,
 ho_{s}$
- Camera viewport calibration

 π_C, t_c

Laser viewport calibration

 π_L, t_L

Underwater laser scanner: Deformation model

How to model the laser deformation?

Underwater Robotics Perception – ICRA'19 Workshop Underwater laser scanner: Deformation model

Universitat

de Girona

Underwater laser scanner: Deformation model

Underwater laser scanner: Deformation model

77
Underwater laser scanner: Deformation model

Universitat de Girona

Synthetic experiment

The model was used to generate laser points:

- 35 rays
- Laser aperture 55°
- Index of refraction air: 1
- Index of refraction viewport: 1.49
- Index of refraction water: 1.33
- 5 points per ray
- 100mm intervals

Elliptic cone:

- Closed form solution for raycone intersection
- Can also be a plane

$$\boldsymbol{c}(h,\beta) = \begin{bmatrix} a \ h \ \cos(\beta) \\ b \ h \ \sin(\beta) \\ h \end{bmatrix}$$

 $g(c,t) = t \oplus c(h,\beta)$

Universitat

de Girona

Experiment:

• Sample points from the laser fan

Universitat

- Fit plane to dataset
- Fit cone to dataset
- Plot fitting error vs incidence angle

Real experiment

Use scanner to generate data points

- Use computer vision to estimate projection plane pose
- Intersect camera ray with projection plane to compute points

Cone fitting error < plane fitting error

Universitat

de Girona

Underwater laser scanner: Triangulation

Ray-ray triangulation

Underwater laser scanner: Triangulation

Ray-ray triangulation

Underwater laser scanner: Triangulation

Ray-ray triangulation

Ray-cone triangulation

Cone equation

 ${}^{\{Q\}}\boldsymbol{c}(h,\beta) = \begin{bmatrix} a \ h \ \cos(\beta) \\ b \ h \ \sin(\beta) \\ h \end{bmatrix}$

$$\boldsymbol{g}(h,\beta,\boldsymbol{t}) = {}^{\{W\}}\boldsymbol{t}_{\{Q\}} \oplus {}^{\{Q\}}\boldsymbol{c}(h,\beta)$$

Universitat

de Girona

Ray-cone triangulation

Cone equation

 ${}^{\{Q\}}\boldsymbol{c}(h,\beta) = \begin{bmatrix} a \ h \ \cos(\beta) \\ b \ h \ \sin(\beta) \\ h \end{bmatrix}$

$$\boldsymbol{g}(h,\beta,\boldsymbol{t}) = {}^{\{W\}}\boldsymbol{t}_{\{Q\}} \oplus {}^{\{Q\}}\boldsymbol{c}(h,\beta)$$

Ray in cone space ${}^{\{W\}}r(\lambda) = \lambda^{\{W\}}v + {}^{\{W\}}o$ ${}^{\{Q\}}r(\lambda) = {}^{\{W\}}R_{\{Q\}}^{-1}\left(\lambda^{\{W\}}v + {}^{\{W\}}o - [t_x \quad t_y \quad t_z]^T\right)$

Ray-cone intersection ${}^{\{Q\}}r(\lambda) = {}^{\{Q\}}c(h,\beta) \rightarrow \lambda {}^{\{Q\}}v + {}^{\{Q\}}o = \begin{bmatrix} a \ h \ \cos(\beta) \\ b \ h \ \sin(\beta) \\ h \end{bmatrix}$

$$\begin{array}{l} \lambda^{2} \left(b^{2} v_{x}^{2} + a^{2} v_{y}^{2} - a^{2} b^{2} v_{z}^{2} \right) \\ + 2\lambda \left(b^{2} v_{x} o_{x} + a^{2} v_{y} o_{y} - a^{2} b^{2} v_{z} o_{z} \right) \\ + \left(b^{2} o_{x}^{2} + a^{2} o_{y}^{2} - a^{2} b^{2} o_{z}^{2} \right) = 0 \end{array} \begin{array}{l} \begin{array}{l} \text{2nd degree equation } \lambda \\ \text{Closed form solution} \end{array}$$

 ${}^{\{Q\}}\boldsymbol{v}$

{*Q*}*o*

Triangulation method comparison

- Reconstruct scene with ray-ray triangulation
- Reconstruct scene with ray-cone triangulation
- Compute distance between each Error (mm) point of each triangulation type

Error

$$\mu = 0.05 \text{ mm}$$

$$\sigma = 0.062 \text{ mm}$$

	Ray-ray	Ray-cone
Time	≈21 s	≈5 s

Ray-cone triangulation is **faster** than ray-ray triangulation at the same **accuracy**.

Underwater laser scanner: Results

3D reconstruction results

3D reconstruction

Same order of magnitude in error with bigger errors underwater.

3D reconstruction

Underwater

Same order of magnitude in error with bigger errors underwater.

Underwater laser scanner: Results

- New underwater laser scanner
- Variable speed and resolution
- A calibration procedure has been established
- Sensor deformation model
- Elliptical cone representation of the light surface
- Ray-cone triangulation is a better approach to triangulate 3D points for steering lasers with flat viewports
- Submillimetric accuracy within calibrated range (0.5-1.5m)

IMR Applications:

• Structure inspection

- Underwater manipulation and motion planning
- Object detection
- Exploration

Universitat

de Girona

Universitat

de Girona

Point cloud preprocess

- Key points extraction
 - Remove planar surfaces (RANSAC, Fischler et al. 1981)
 - Remove points with curvature (Pauly et al., 2002) below threshold

Point cloud preprocess

- Key points extraction
 - Remove planar surfaces (RANSAC, Fischler et al. 1981)
 - Remove points with curvature (Pauly et al., 2002) below threshold
- Feature extraction: Fast point feature histogram (Rusu et al., 2009)

Universitat

de Girona

Registration algorithm

- Coarse registration
 - Feature association
 - Roto-translation using Singular Value Decomposition (J. Besl and McKay, 1992)

Registration algorithm

- Coarse registration
 - Feature association
 - Roto-translation using Singular Value Decomposition (J. Besl and McKay, 1992)
- Fine registration: Point to point ICP

Experiments and results

Underwater Robotics Perception – ICRA'19 Workshop Structure inspection using underwater laser scanner

Universitat de Girona

Experiments and results

Dead reckoning

Underwater Robotics Perception – ICRA'19 Workshop

Structure inspection using underwater laser scanner

SLAM

Universitat

Structure inspection using underwater laser scanner

Experiments and results

Structure details: dead reckoning navigation

Structure inspection using underwater laser scanner

Experiments and results

Structure details: SLAM

Structure inspection using underwater laser scanner

Experiments and results

Robot uncertainty

IMR Applications:

- Structure inspection
- Underwater manipulation and motion planning
- Object detection
- Exploration

Underwater Robotics Perception – ICRA'19 Workshop Underwater manipulation using laser scanner

- Cartesian manipulator
- 6 degrees of freedom robotic arm
- Motion planning in unknown environment

Underwater Robotics Perception – ICRA'19 Workshop Underwater manipulation using laser scanner

Universitat de Girona

Underwater Robotics Perception – ICRA'19 Workshop Motion Planning for Autonomous Intervention

1. Localize

Locate pipe corner markers

3. Approach

2. Homing

Moving in front of the pipe

4. Visual Servoing

Detect & Turn Valve

- Visual Navigation using poster features during the whole test.
- Laser was on after first approach planning.
Underwater Robotics Perception – ICRA'19 Workshop Motion Planning for Autonomous Intervention

Universitat de Gi**r**ona

Underwater Robotics Perception – ICRA'19 Workshop Motion Planning for Autonomous Intervention

Unknown Static Obstacles SBPL Motion Planning Connector Plugging

Universitat

de Girona

IMR Applications:

- Structure inspection
- Underwater manipulation and motion planning
- Object detection
- Exploration

Goal 1: Automatically recognize and locate objects from

colourless 3D point clouds.

Girona 500 AUV with the laser scanner.

Underwater Robotics Perception – ICRA'19 Workshop 3D object recognition pipeline

- Introduced by Wohlkinger [Wohlkinger 11].
- Building on the shape function [Osada 01].

Laser Scanner

The proposed pipeline: Matching

Matching based on Chi-square distance

Based on minimum Chi-square distance between scan object and all objects views in the database [Rusu 08] [Hetzel 01].

The proposed pipeline: Pose Estimation

1. Coarse alignment :

□ Features based registration algorithm. The Fast Points Features Histogram (FPFH) [holz 15].

2. Fine alignment:

□ Iterative registration algorithm (ICP) [besl 92].

Universitat

de Girona

IMR Applications:

- Structure inspection
- Underwater manipulation and motion planning
- Object detection:
 - Localization
 - Manipulation
- Exploration

Underwater Robotics Perception – ICRA'19 Workshop 3D object recognition: Localization

Underwater Robotics Perception – ICRA'19 Workshop 3D object recognition: Manipulation

Underwater vehicle manipulation system

- Girona 500 AUV
- 4 degrees of freedom robotic arm
- Object grasping

Underwater Robotics Perception – ICRA'19 Workshop 3D object recognition: Manipulation

IMR Applications:

- Structure inspection
- Underwater manipulation and motion planning
- Object detection:
- Exploration

Underwater Robotics Perception – ICRA'19 Workshop Underwater autonomous exploration

Autonomous exploration of complex underwater environments using a probabilistic Next-Best-View planner

> Narcís Palomeras, Natalia Hurtós, Eduard Vidal and Marc Carreras Universitat de Girona

Autonomous exploration of complex underwater structures. Nowadays carried out using a multibeam sonar and a pan&tilt but carried out using a laser scanner in a near future.

Narcís Palomeras, Natalia Hurtós, Eduard Vidal and Marc Carreras

L3S: Licensed to IQUA Robotics

Real-time Laser Scanner for Autonomous IMR Applications

May 24, 2019 Dr. Narcís Palomeras Dr. Pere Ridao Dr. Albert Palomer PhD. Khadidja Himri PhD. Dina Youakim https://cirs.udg.edu/

