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Overview

• Motivation

• Feature-based Reconstruction
– Original
– Non-parametric
– Degeneracies

• Dense Reconstruction
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Motivation

• Navigation for Autonomous Underwater Vehicles (AUVs)
– Correct drift

• Inspection of natural and manmade structures
– Ships in harbor, bridge pilings
– Archeological sites
– Reefs

Advanced Perception, Navigation and Planning for Autonomous In-Water Ship Hull Inspection. F. Hover, R. Eustice, A. Kim, B. Englot, H. 
Johannsson, M. Kaess, and J. Leonard, IJRR 2012
State of the art and applications in archaeological underwater 3D recording and mapping. F. Menna, P. Agrafiotis, and . Georgopoulos, J. 
Cultural Heritage 2018
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Sensors for Underwater Navigation/Inspection

• What sensors should we attach to our robot?

• Camera image (0.5m distance to object)
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Underwater Imaging

• What about other wavelengths?

• Radio waves don’t propagate far underwater: no GPS…
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Underwater Navigation: Acoustic!

• Seafloor tracking with a DVL (Doppler velocity log, an acoustic 
odometry sensor)

• Usually combined with an
IMU as navigation solution

• State estimate will drift over time

teledynemarine.com
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Underwater Imaging: Acoustic!

Profiling sonar

• Uses phased array of transducer for image forming

• Often used for bathymetric mapping:

Seafloor survey by WHOI (Woods 
Hole Oceanographic Institute)

soundmetrics.com
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Submaps

• Idea: Accumulate several scans using vehicle odometry

• Low drift over 30 seconds

• Submap can be considered as a single measurement of the 
surface
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Factor Graph over Submaps

• Estimate pose of each submap

• Connected by vehicle odometry factors

• Loop closure factor from registering submaps of the same area

• Also called a “pose graph”
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Teixeira, Kaess, Hover, Leonard, IROS 2016
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Mapping Less Structured Environments

Ship hull

Seafloor and pilings under a pier

Teixeira, Kaess, Hover, Leonard, IROS 2016
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Feature-based (Sparse) Reconstruction
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Imaging Sonar aka Forward-Looking Sonar

Acoustic lens
• Covers a larger volume of 

water in one ping
• Relevant because of slow 

sound speed in water 
(about 1500 m/s)

• Active, acoustic sensor
• Frequency: around 2 MHz
• Range: up to 10s of 

meters
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Prior Work

• Planar assumption
– Johannsson, Kaess, Englot, Hover, and Leonard, IROS 2010
– Normal distance transform

• Locally planar assumption
– Aykin and Negahdaripour, JFR 2013
– Gaussian distribution transform

• Pairwise
– Brahim, Gueriot, Daniel, and Solaiman, Oceans 2011
– Evolutionary algorithm to recover 3D geometry
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Monocular vs Sonar

vs

2D image measurement of 3D world
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Sonar Frustum

Top view Side view Isotropic view

Spherical coordinates:

bearing range elevation
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Sensor Frustum – Comparison

Monocular

Sonar
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Sensor Models – Comparison

Monocular

Sonar
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Monocular vs Sonar

vs

• Ambiguity in range
• Unconstrained 

• Resolution, SNR are high
• 1 pixel ↔ single surface patch
• Photometric consistency

• High turbidity reduces range (1m or 
less)

• Ambiguity in elevation
• Constrained 

• Resolution, SNR are low
• 1 pixel ↔ multiple surface patch
• Viewpoint variance

• High turbidity has no effect
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Sparse Localization & Mapping – Monocular

Solution: Structure from Motion (SFM)

Optimize reprojection error based on pinhole camera model



20

Sparse Localization & Mapping – Sonar

Solution: Acoustic Structure from Motion (ASFM)

Optimize reprojection error based on imaging sonar sensor model
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Naïve ASFM Implementation

• Factor graph representation

• MAP estimation  Nonlinear least squares optimization

• Spherical landmark parameterization

• Solved just as SFM, but with sonar projection model  
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Naïve ASFM Solution

Optimization: Nonlinear least squares

Solution: Normal Equations
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Naïve ASFM Can Recover Structure

x - Before optimization

+ - After optimization

Huang and Kaess, IROS 2015
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Frontend Improvements

• A-KAZE features – diffusion 
in nonlinear scale space

• Joint compatibility feature 
matching framework

Gaussian 
diffusion

Anisotropic
diffusion

Individual Compatibility Joint Compatibility

Westman, Hinduja, Kaess, ICRA 2018
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ASFM Degeneracies

• Degeneracy: Gaussian is poor parameterization of elevation

– Solution: non-parametric search over feasible range

• Degeneracy: Certain DOF of motion may not be constrained 
by feature correspondences

– Solution: degeneracy-aware state updates
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ASFM Formulations

Original ASFM

Method 1: 
Non-Parametric Factors 

Method 2: 
Mixed 2D Nodes

Dead Reckoning

Westman, Hinduja, Kaess, ICRA 2018
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Degeneracy-aware Updates

• Robot pose can also be affected by degeneracy

• Update state based on singular value decomposition

• Only update in directions that are sufficiently constrained

• Straight-forward Gauss-Newton style optimization
– No need to heuristically “dampen” system as in Levenberg-

Marquardt

Westman and Kaess, under submission to IEEE JOE
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Simulation Results

Westman and Kaess, under submission to IEEE JOE
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Test Tank
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Experimental Results – Test Tank

Westman and Kaess, under submission to IEEE JOE
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Experimental Results – Ship Hull

Ground truth trajectories

J. Li, M. Kaess, R. Eustice, and M. Johnson-Roberson, “Pose-graph SLAM using forward-looking 
sonar”, IEEE Robotics and Automation Letters (RA-L), vol.3, no. 3, pp. 2330-2337, Jul. 2018.
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Experimental Results – Ship Hull

Westman and Kaess, under submission to IEEE JOE
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Dense Reconstruction
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Dense Reconstruction – Related Work

• Profiling sonar
– Teixeira, Kaess, Hover, and Leonard, IROS 2016
– e.g. lens with 1 degree opening, approximated as single line scanner

• Space carving
– Aykin and Negahdaripour, JOE 2016
– Feasible object region mask (FORM), alpha-shapes
– Only simple objects, known poses, discards most information from sonar

• Min-filtering
– Guerneve, Subr, and Petillot, JFR 2018
– Needs wide variety of viewpoints

• Occupancy grid mapping
– Wang, Ji, Woo, Tamura, Yamashita, and Hajime, SYROCO 2018
– Inverse sensor model, needs wide variety of viewpoints

• Inference with generative sensor models
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Dense Reconstruction Using Generative Models

• Linear approximation of elevation aperture
– Guerneve, Subr, Petillot, JFR 2018
– Blind deconvolution with spatially-varying kernel
– Requires precise motion along z axis.

• Objects on seafloor
– Aykin and Negahdaripour, JOE 2016
– Directly estimates elevation angle of each pixel, similar to our approach

• Our goal
– Arbitrary scenes
– Arbitrary sensor motion
– Applicable to wide aperture sonar
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Reflection Model

Simple diffuse reflection model:

– k: normalization constant
– 1 ≤ 𝑚 ≤ 2
– 𝛼: angle of incidence between incoming acoustic beam and surface 

normal

Assumptions:
– Specular reflection negligible due to rough surfaces and grazing 

incident angles
– Time/range varying gain (TVG/RVG) applied to raw image

More general models could be used with proposed algorithm
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Image Preprocessing

a) Raw polar coordinate sonar image

b) Denoising with anisotropic diffusion

c) Surface segmentation using MSER

d) Mask applied to denoised image

Westman and Kaess, under submission
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High-level Approach

1. Initialize from first range (top)

2. Recover 3D of each frame using
generative model (from change of
surface normal)

3. Fuse multiple frames using TSDF

Assumption: Each pixel (intensity measurements) arises from 
single surface patch

Westman and Kaess, under submission
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Reconstruction of Mockup Piling in Tank

Space Carving            Occupancy Grid          Our Method

Ground truth: Faro survey 
lidar scan of mockup

Westman and Kaess, under submission
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Reconstruction of Piling (San Diego)

Westman and Kaess, under submission
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Reconstruction of Piling (San Diego)

Space Carving            Occupancy Grid          Our Method

Ground truth: measured 
piling dimensions

Westman and Kaess, under submission
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Quantitative Results

Westman and Kaess, under submission

Average absolute 
distance error

Root mean 
square error
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Conclusion & Future Work

• Sparse: helps vehicle localization, requires good features

• Dense: still basic research

Next steps:

• More general initialization

• Calibration: Automatically derive generative sonar model

• Alternative surface reconstruction methods

• How to handle multiple surfaces projecting to same pixel

• Beyond diffuse reflection

• Tightly coupled IMU integration
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