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A particular challenge for Autonomous Underwater Vehi-
cles (AUVs) operating in complex coral reef environments
and conducting low-altitude reef-based monitoring and man-
agement tasks (approximately 0.5 – 1.2 m from the coral) is
position estimation and obstacle detection where traditional
acoustic based sensors (e.g. sonars, Doppler Velocity Logs)
become less reliable due to minimum ranging distances
and multipathing. Real-time stereo and monocular vision
systems offer a viable means for navigation, obstacle avoid-
ance and in-situ automated management tasks. However,
such approaches are limited by their ability to robustly
detect features/objects, particularly in reduced visibility con-
ditions, false detections from dynamic objects such as fish or
strong reflections/refractions from sun-glint, and motion blur.
This paper provides an overview of some real-time vision-
based perception approaches developed for, and applied
to, small-scale AUVs for improving underwater navigation
and obstacle avoidance in coral reef environments. We also
present applications of our latest work for AUV-based coral
reef management tasks including control of crown-of-thorns
starfish and coral larvae reseeding over damaged reefs.

I. INTRODUCTION

Underwater robotic systems, for example Autonomous
Underwater Vehicles (AUVs), are transforming our ability
to monitor and management complex marine environments
[1]. In many applications, optical imagery is a fundamental
data requirement for monitoring, object classification and
manipulation. Whilst traditional underwater sensors rely on
sonar-based technologies, these become prohibitively expen-
sive and less reliable for use at large-scales and in complex
coral reef environments.

Underwater systems that use only visual perception for
navigation, object detection and task execution offer a poten-
tially lower-cost and expanded capability solution for certain
operational regimes. This is particularly so for complex
coral reef environments where survey and management tasks
are often performed at very low altitudes (e.g. 0.5 - 1.2m
above the seafloor), and in highly cluttered 3D environments.
However, the use of vision-only AUVs in these environments
has many challenges such as image consistency, lighting,
dynamic objects (e.g. fish and kelp), unstructured terrain, and
complex hydrodynamic forcing (wave action). As such there
has been limited examples of vision-only AUVs deployed
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Fig. 1: The RangerBot AUV is a vision-only robot with
two stereo camera pairs for performing navigation, obstacle
avoidance and science/management tasks. (Inset) the down-
ward facing stereo camera pair and LEDs.

operationally. This paper provides a high-level overview of
some visual perception approaches developed for, and ap-
plied to, vision-only AUVs to perform coral reef monitoring
and management tasks.

II. VISION-ONLY AUVS

Although many AUVs around the world employ cameras
for mapping and object detection tasks, there is a paucity of
platforms that rely solely on real-time vision to perform nav-
igation and higher-level tasks. This is even more so true for
platforms which have the ability to operate in close proximity
to complex coral reef environments. The limited examples
within the literature are the Starbug AUV developed by the
CSIRO [2]–[4], and the Aqua AUV developed by McGill
University [5]. Recently, driven by the availability of small
and relatively low-cost and low-power Graphic Processing
Units (GPUs), the use of vision to perform certain tasks on-
board AUVs is increasing. The following section presents a
new AUV platform that leverages this technology.

A. The RangerBot AUV

Figure 1 shows the RangerBot AUV, a small-scale vision-
only AUV specifically designed for operating in complex
coral reef environments with the flexibility to perform real-
time perception-based tasks for management and restora-
tion activities. The RangerBot AUV is built around two
stereo camera pairs which provide all navigation, obstacle
avoidance and science/management task information. The
downward stereo pair has a camera baseline of 75 mm, with
the forward stereo camera pair having a baseline of 120 mm.
All image processing and mission execution software runs
on-board the AUV using an NVIDIA Jetson TX2 module as
the primary computation capability.



Fig. 2: Examples of images collected by the RangerBot AUV
at 7.5 Hz to highlight the challenges of real-time vision
processing in coral reef environments. The night-time images
can be degraded by motion blur and from marine organisms
being attracted to the forward lights making obstacle detec-
tion difficult. (Top row): Images from a downward facing
camera, (Lower row) images from a forward facing camera.

The AUV is designed for deployment by a single person
using small support vessels and shore-based operations. As
such, it weighs only 16 kg with a length of 0.75 m and
width of 0.44 m, and has removable and hot-swappable
batteries to increase its utility in the field. Its unique thruster
configuration allows full six Degree-of-Freedom control,
including hover capabilities which is essential for low-
altitude manoeuvring in complex coral reef environments.
Operationally, the AUV has an endurance of over 6 hours
(without swapping batteries) and a depth rating of 100 m.
However, typically it is used from the shore to a depth of 30m
for shallow coral reef monitoring activities. Other features
include LED lights and a custom payload attachment point
(see Section IV for examples). The RangerBot AUV has been
used to help develop and evaluate the approaches presented
in this paper.

III. REAL-TIME VISUAL PERCEPTION FOR COMPLEX
UNDERWATER ENVIRONMENTS

Complex underwater environments, such as shallow coral
reefs, exhibit many phenomena that makes robust real-time
image processing challenging. These include variable light-
ing from shadows and wave ripple where often strong natural
sunlight can overpower any strobe lighting. Additionally,
night-time operations can be compromised by too little light,
or by marine organisms that are attracted to the lights
and clutter the image. Also when conducting low-altitude
survey work, motion blur from low-lighting and camera
hardware limitations can degrade image quality. Figure 2
provides examples of different image quality obtained by
the RangerBot AUV to illustrate some of the challenges
particularly for night-time operations.

Underwater visibility enhancement has promise to improve
image quality for a range of navigation and detection tasks
and has been researched for many years. However, the real-

time implementation on AUVs appears limited, particularly
in coral reef environments. Previous work [6] has developed
an approach which exploits stereo imagery to simultaneously
enhance and color correct an underwater image. Recent
implementations of the approach has achieved near real-
time (0.5Hz) processing on low-power GPU’s. Newer en-
hancement approaches that use machine learning techniques,
such as Generative Adversarial Networks [7], that can exploit
GPU technology have promise for use on vision-only AUVs.

Fig. 3: Example of underwater image visibility enhancement
using the method described in [6] with application to low-
visibility cluttered environments. (Left) original, (Right) en-
hanced.

A. Visual odometry

The ability for an AUV to know or estimate its position
whilst underwater is vital for successful mission execution.
Traditionally, position estimation (whilst underwater) is pro-
vided by some form of acoustic localization (e.g. Ultra Short
Baseline, Long Baseline) with this information transmitted
to the AUV via an acoustic modem or tether. In shallow
coral reef environments, due to multipathing, non-line-of-
sight operations and logistical constraints, these approaches
become less reliable with the AUV being more reliant on its
own on-board sensors to estimate position.

Position estimation has been explored and successfully
deployed particularly using underwater Simultaneous Local-
ization and Mapping (SLAM) [8], [9], [10]. However,
in many situations, such as AUV-based reef management
applications, these approaches become less suitable due to
no opportunities for loop-closure. One approach for shallow
water position estimation is to use visual odometry combined
with operational methods to limit odometry drift [11]. This
was explored and evaluated in early work using a vision-
only AUV [12]–[14] which showed navigation performance
errors of <8% of distance travelled in representative coral
reef environments. In recent years, more advanced open
source visual odometry methods (e.g. LIBVISO2 [15]) have
shown promise. Whilst considered optimized for forward
looking cameras, these techniques can be modified to achieve
relatively low error odometry estimates for downward look-
ing cameras in coral reef environments. Figure 4 shows
an example of a real-time estimated visual odometry track
implemented on-board an AUV across a complex trajectory.
In these trials, error rates of less than 2% distance travelled
were achieved over coral, rubble and coarse sand substrates.



Fig. 4: Example of visual odometry during a complex multi-
segment shallow water mission with partial sand cover. The
AUV starts from near the boat (marked with red circles) and
performs two loops returning to the boat after each loop.

B. Semantic monocular obstacle detection

Operating AUVs in previously unvisited and cluttered
environments (e.g. reefs) typically requires some form of
real-time and reactive obstacle detection and avoidance strat-
egy. Sonars are typically used for mapping the immediate
surrounds, however, in close proximity to structures their
resolution and reliability degrade.

Vision-based underwater obstacle detection has been ex-
plored in recent years and typically employ producing
range (forward looking) estimates of the scene producing
sparse (e.g. SURF [16]) and dense maps (e.g. [17] and
LIBELAS [18]) which can be produced in real-time on-
board an AUV. The effective range of these obstacle maps is
visibility dependent, with both sparse and dense maps often
challenged by dynamic objects in the scene (e.g. fish, kelp)
and large gaps which limit feature density.

In some recent work, Arain et al. [19] proposed the
use of semantic image segmentation to enhance image-wide
obstacle detection. In this approach, feature-based stereo
matching is combined with learning-based segmentation mo-
tivated by [20] to produce more robust obstacle maps for
AUVs operating in coral reef environments. Two methods
of image segmentation are considered; The first is a binary
classification which segments the image into obstacle and
non-obstacle regions. The semantically labelled results can
be used directly from monocular image streams for conserva-
tive obstacle avoidance. However, by combining them with
sparse features (e.g. SURF) obtained from stereo imagery,
the segmented image can be ‘draped’ over the sparse features
to create a more complete obstacle map. Figue 5 shows an
example of the binary labelled image with estimated 3D
obstacle map.

The second approach is a multiclass classification where
during training, the scene is partitioned into subjective re-
gions (near, mid, far and free-space) based on sparse ranging
data. This approach has the advantage that a monocular
image stream can be analyzed to produce a semi-continuous
estimate of the obstacles that the AUV may need to plan
through. Examples of outputs from the multiclass obstacle
segmentation are show in Figure 6.

Fig. 5: Example of a 3D obstacle map by combining the
sparse feature map (top left) with the semantically labelled
obstacle image (top right). The lower figure shows an iso-
metric view of the resulting 3D obstacle map (relative to the
image) which an AUV could use for reactive visual servoing
and local path planning (Extracted from [19]).

IV. VISUAL PERCEPTION-TO-ACTION FOR CORAL REEF
MANAGEMENT AND RESTORATION

Whilst most underwater vision systems focus on naviga-
tion and obstacle avoidance for monitoring only tasks, real-
time vision systems have to the potential to perform higher
level management actions based on what is observed as the
AUV traverses the environment. We term this Perception-
to-Action, and requires an ability to close-the-loop between
the on-board vision system and a tool or instrument with-
out human intervention. The following sections provide an
overview of two novel applications of perception-to-action
using vision-only AUVs for management of coral reefs.

A. Automated Crown-of-Thorns Starfish (COTS) Detection
and Population Control

Crown-of-Thorns Starfish (Acanthaster planci) are a sig-
nificant threat to the Great Barrier Reef [21]. These starfish
literally eat the coral and in recent years have proliferated
with accelerated outbreaks occurring. Controlling their num-
bers is primarily performed using manual injection of a
biological agent into the starfish by a diver using a hand-held
supply gun and needle [22]. In order to help upscale Crown-
of-Thorns Starfish (COTS) control efforts, we proposed the
use of a vision-based robotic system capable of automated
COTS detection and real-time injection of the starfish.

COTS are very cryptic and can be difficult to detect within
coral reefs. Early work on vision-based detection [23] was
feature-based with limited performance and non-real time
processing times. In recent work [24], we developed the



Fig. 6: Examples of monocular obstacle segmentation using
a multiclass classifier; (Left) Original image, (Right) the
predicted obstacle range based on training images (i.e. red is
near, green is mid-field, blue is far and free-space is white).
Results by Bilal Arain, QUT.

first real-time COTS detection and tracking system for use
on a moving AUV in a dynamic and visually degraded
environment. This was a novel Random Forest Classifier
(RFC) trained from underwater footage which was embedded
within a particle filter detector and tracker. The predicted
class probability of the RFC was used as an observation
probability to weight the particles, with sparse optic flow
estimation used for the prediction step of the filter.

In order to train the classifier, cameras were attached to the
hand-held injection guns used by divers during population
control campaigns. Due to the variability in the way COTS
are encountered in the environment, the training images were
separated into three classes (easy, medium and hard) with
examples shown in Figure 7. Training was performed against
only the easy and medium classes due to the risk of the
robotic injection system getting entangled within coral during
deployment when trying to inject hard to observe COTS
cases.

Fig. 7: Example of COTS degree-of-detection classification
used for training; (Left) Easy, (Middle) Medium, and (Right)
Hard.

Figure 8 shows the number of false positive detection from
two large image sequences using a detection threshold (see
[24] for details) of 50% against the score of the best particle.
These results show for a detection threshold of 50% there
were approximately 2% false positive detections. However,
in practice this would not be acceptable due to the system
potentially trying inject corals rather than starfish causing

damage to the robot. A threshold of >80% on the best
particle score reduces the false positive rate to 0.3% which
when combined with hierarchical operational constraints
(e.g. constant altitude image collection and depth) provides
robust and acceptable detection accuracy. This classifier
achieved a processing rate of 8Hz on-board the RangerBot
AUV when running in conjunction with the vision-based
navigation system and evaluated on the Great Barrier Reef.

Fig. 8: Results showing the number of false positive COTS
detections with a RFC detection threshold of 50% from two
field image sequences against the score of the best particle.

A limitation of the approach described in [24] was that
only one COTS could be tracked in an image in real-
time. The approach was updated by incorporating a detector
based on GoogLeNet deep network to allow detection and
tracking of multiple COTS in the same image. Figure 9
shows an example output from the classifier with multiple
target detections and using non-maxima suppression to avoid
over labelling.

Fig. 9: Example of real-time multi-COTS detector output.
(Left) Detector results before a non-maxima suppression
stage where multiple over labelling detections are merged
together. (Right) Improved overall COTS segmentation.

This multi-COTS detector was evaluated using the Ranger-
Bot AUV which achieves an image processing rate of
approximately 10 Hz (running in addition to the vision-
based navigation system). The perception-to-action task was
closed with the addition of a novel injection system that can
physically inject the detected COTS with Bile Salts [22] as
shown in Figure 10. Field results on the Great Barrier Reef
demonstrated real-time detection and control of starfish for
both the easy and median classes shown in Figure 7.

B. Automated Coral Larvae Reseeding for Reef Restoration
Coral cover across the world’s reefs has significantly

declined due factors including coral bleaching, cyclones and



Fig. 10: The RangerBot AUV with the self-contained COTS
injection system attached to the underside of the vehicle
during controlled trials (shown in the retracted state). The
injection arm extends out and down to autonomously deliver
a dose of bile salts into the detected COTS.

destructive fishing practices (e.g. explosives). On various
regions of damaged reefs, active restoration approaches are
being explored to increase coral cover and return biodiversity.
One such approach is coral reseeding [25] where coral larvae
are captured during their mass coral spawning [26], then
reared in special cages at sea for 4–7 days until they are ready
to settle and then redistributed onto the damaged sections of
reef.

Until recently, coral reseeding required manual redistribu-
tion of the larvae, limiting the achievable restoration area
to 100-200 m2. To increase the daily restoration area to
a desired hectare to km2 scale, we proposed the use of a
robotic system to automatically distribute the coral larvae
over the damaged reefs using real-time visual perception-to-
action to strategically place larvae on the most appropriate
substrates. As an initial trial, a custom larval delivery system
was developed for a RangerBot AUV which could automat-
ically release larvae. In order to train what is considered
‘appropriate’ substrate for larval settlement, the AUV was
programmed to conduct a vision-based grid survey across a
site with a human expert remotely triggering larvae release
when over suitable locations. Figure 11 shows a RangerBot
AUV during coral reseeding trials on the Great Barrier Reef.

Fig. 11: A RangerBot AUV with the first prototype coral
larvae delivery system during reseeding trials on the Great
Barrier Reef in December 2018.

The recorded stereo images along with expert “labelling”,

and derived metrics (e.g. rugosity, slope and depth) were
initially combined in an SVM to predict when larvae should
be released. The Great Barrier Reef trials (Figure 11) covered
approximately 200 m2. In April 2019, an upgraded larvae
delivery system was demonstrated using the RangerBot AUV
on severely degraded reefs in the Philippines. In these trials,
a single vision-based AUV distributed over 2.5 million
larvae across three hectares in 6 hours. Figure 12, shows
a RangerBot AUV during automated reseeding activities in
the Philippines. Current work is now investigating DCNN
approaches to improve automated site selection performance.

Fig. 12: A RangerBot AUV during vision-based coral larval
reseeding activities in the Philippines, April 2019. The larvae
delivery system is attached to the underside of the AUV.

V. CONCLUSIONS

This paper has provided an overview of some real-time
vision-based perception approaches developed for, and ap-
plied to, AUVs to improve underwater navigation and ob-
stacle avoidance in coral reef environments. The approaches
include methods for image enhancement, obstacle detection
and visual odometry and have been successfully evaluated
in shallow, yet complex reef environments using vision-
only 6DOF AUVs. In addition to the image processing
approaches, examples of real-world applications of vision-
based perception-to-action are presented for complex coral
reef management and restoration tasks that include the
robotic control of crown-of-thorns starfish and coral larvae
reseeding over damaged reefs.
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