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Abstract— Underwater caves are extremely challenging envi-
ronment for perception, due to the absence of natural light and
the highly unstructured nature of such environment, making
it also dangerous and cognitively heavy even for highly skilled
divers. This paper presents an overview of our previous works
for underwater cave mapping which combines data from mul-
tiple sensors to assist the divers by reducing the cognitive loads.
The challenges of the underwater environment augmented
by the complete absence of natural light and the effects of
sharp shadows are discussed together with the contributions
of the different sensing modalities. A tightly-coupled keyframe-
based SLAM framework with loop-closing and relocalization
capabilities combining visual, inertial, depth, and acoustic
sensors has been described together with the design of a sensor
suite for collecting data in the challenging environment of
underwater caves. Experimental results illustrate the accuracy
and robustness of the proposed methodology from a cavern at
Ballroom, Ginnie Springs, FL, USA.

I. INTRODUCTION

In this paper, we show our efforts towards underwater cave

reconstruction – starting from offline stereo vision only 3D

reconstruction to the current state where we combine Sonar,

visual, inertial, and water pressure information for real-time

robust state estimation. We discuss the challenges of under-

water environments; the feasibility of using and combining

different sensors for robotic operations; present results from

those methods and provide future work directions.

Exploration of underwater environments with autonomous

robots could assist us in a variety of scenarios, ranging

from historical studies to health monitoring of coral reef

and underwater infrastructure inspection – e.g., bridges,

hydroelectric dams, water supply systems and oil rigs. More

specifically, mapping underwater structures – caves, ship-

wrecks, etc. – is crucial for several fields, such as, marine

archaeology, Search and Rescue (SaR), resource manage-

ment, hydrogeology, and speleology, and has many broader

impacts in terms of economy, conservation, and scientific

discoveries. However, due to the highly unstructured nature

of such environments, navigation by human divers could be

extremely dangerous and labor intensive. Hence, employing

an underwater robot is an excellent fit to build the map of the

environment while simultaneously the robot localizes itself

in the map.

Currently, most of the efforts for mapping caves are per-

formed by divers that need to take measurements manually
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Fig. 1. Cave in Mexico with the dive light illuminating part of the walls.

using a grid and measuring tape, or using hand-held sen-

sors [1], and data is post-processed afterwards. Autonomous

Underwater Vehicles (AUVs) present unique opportunities

to automate this process; however, there are several open

problems that still need to be addressed for reliable deploy-

ments, including real-time robust Simultaneous Localization

and Mapping (SLAM).

Underwater environment suffers from light and color at-

tenuation, haze, scattering, and dynamic obstacles, such as

marine life and particulates. In addition to the above chal-

lenges, in underwater cave environments there is a complete

absence of natural light. The only lighting available comes

from artificial lights brought in by the robot or by divers;

see Fig. 1 where a cave is illuminated by a strong video

light. It is worth noticing in Fig. 1 a second narrow beam

of blueish light that extends from the top of the image; this

beam is produced by a dive light held by a second diver.

The complete lack of natural (ambient) light results in harsh

shadows. In contrast to most vision applications where the

light remains constant, at least for brief periods of time, in

the cave environment, the light source (or sources) move

as much as the camera. In some configurations the light

source is carried by a different person – see Fig. 1 – while in

other the light is attached (albeit not rigidly) to the sensing

apparatus – see Fig. 2(a) and Fig. 2(c).

In order to produce a robust and accurate estimate of

the pose of the sensors and a map of the environment

we augment a state-of-the-art Visual-Inertial state estimation

package, OKVIS [2], with acoustic and depth sensor data,

and with loop closing capabilities. In particular, a mechanical

scanning sonar, which returns range measurements based on

acoustic information, and a depth sensor, which provides

depth measurement from the water pressure, are introduced

to aid the visual-inertial system. Furthermore, a pre-pro-



cessing step is introduced to alleviate the water effects

on the visual data. The different components are modular

so depending on the application, they can be activated on

demand. In the experimental data collected in an underwater

cave, we qualitatively show that the integration of multiple

sensors improves the quality of the state estimation and

provides a real-time dense 3D reconstruction.

II. RELATED WORK

Acoustic sensors have been the first choice for underwater

SLAM and navigation for a long time. Using such sensors,

– e.g., Doppler Velocity Log (DVL), ultra-short baseline

(USBL), and multibeam imaging sonar – many underwater

navigation algorithms [3], [4], [5], [6], [7] have been de-

veloped. A recent example includes Sunfish [8] – a human-

portable autonomous underwater vehicle capable of planning,

SLAM, exploration, and control. The AUV performed a

successful underwater cave exploration using a real-time

SLAM system combining expensive sensors, including a

multibeam sonar which provides a fan of sonar beams, an

underwater dead-reckoning system based on a fiber-optic

gyroscope (FOG) IMU, acoustic DVL, and pressure-depth

sensors.

In the last few years, both pure visual and visual-inertial

odometry (VO and VIO, respectively) systems have gained

maturity and are capable of performing real-time accurate

navigation for indoor and outdoor environments covering a

large area. Though designed for small scale indoor environ-

ment, PTAM [9] is the first one of such algorithms which

provides method for mapping based on keyframes, efficient

tracking and mapping running in two parallel threads, camera

pose estimation for every frame, and relocalization after

tracking failure. Later on, other VO systems, based on

both direct method and indirect (feature-based) methods,

have been developed – e.g., ORB-SLAM [10], SVO [11],

LSD-SLAM [12], DSO [13]. For improved accuracy and

robustness, filtering based – e.g., MSCKF [14], ROVIO [15],

REBiVO [16] – and non-linear optimization based – e.g.,

OKVIS [2], visual inertial ORB-SLAM [17], VINS-Mono

[18] – VIO systems have been developed showing excellent

performance.

However, due to low visibility, low contrast, haze, and

scattering, vision-based navigation and exploration is very

challenging and often results into failure. In our recent work

[19], we present a comprehensive study and performance

analysis of state-of-the-art open-source visual odometry al-

gorithms in different underwater environments. Most of the

vision based underwater navigation algorithms are developed

for experiments in open areas with natural lighting or arti-

ficial lighting that completely illuminates the field-of-view.

However, in the highly unstructured nature of underwater

environment, data collection and exploration based on DVL

and sonar while diving is expensive and sometimes also

not suitable. Corke et al. [20] compared acoustic and visual

methods for underwater localization showing the viability of

using visual methods underwater in some scenarios. Hence,

combination of visual and acoustic sensor opens the scope

for the design and development of underwater navigation

and mapping algorithms using both sensors. Our proposed

approach [21], [22] shows the feasibility of such a technique

in underwater domain.

III. TECHNICAL APPROACH

In this section, first we present a brief overview of a

custom-made sensor suite used in the data collection pro-

cess. Second, we describe our tightly-coupled non-linear

optimization based SLAM system with loop-closing and

relocalization capabilities fusing Sonar, visual, inertial, and

pressure sensor.

A. Sensor Suite Overview

The sensor suite is equipped with two IDS UI-3251LE

cameras in a stereo configuration, Microstrain 3DM-GX4-

15 IMU, Bluerobotics Bar30 pressure sensor, Intel NUC

which has Linux operating system and runs Robot Operating

System (ROS) [23], and IMAGENEX 831L mechanical

scanning Sonar. The cameras are synchronized by a trigger

which captures 15 frames per second; the Sonar provides

range and heading information by scanning over a plane

over 360◦, with angular resolution of 0.9◦; the IMU provides

angular velocity and linear acceleration measurements at a

rate of 100Hz; and the depth sensor gives water-pressure

measurements at 1Hz. A 5-inch LED display has been added

to provide visual feedback to the diver as well as to interact

via AR tags [24] to start/stop recording, change camera

and Sonar parameter, and to run the SLAM algorithm on-

board. The PVC tube enclosure for the electronics has been

designed and tested to ensure the device is waterproof up to

100 meters. One of the design criteria of such a sensor suite

was to ensure the ease of deployment in different modes

– e.g., hand-held, single or dual Diver Propulsion Vehicle

(DPV) – see Fig. 2. Please refer to our work [25], [26]

for the detailed specifications of the hardware and software

components.

B. Notations and States

In the state estimation framework, the reference frames are

denoted as C for Camera, I for IMU, D for Depth, S for

Sonar, and W for World. Let us denote XTY = [XRY |XpY ]
the homogeneous transformation matrix between two arbi-

trary coordinate frames X and Y , where XRY denotes the

rotation matrix with corresponding quaternion XqY and XpY

represents the position vector.

The state of the robot R is defined as xR:

xR = [W pT
I ,W qT

I ,W vT
I , bg

T , ba
T ]T (1)

Containing the position W pI , the quaternion W qI , the linear

velocity W vI . All of them are defined in the IMU reference

frame I with respect to the world reference frame W .

Furthermore, the gyroscope and accelerometer bias bg and

ba are also estimated and placed in the state vector.

The corresponding error-state vector is defined in minimal

coordinates, while the perturbation takes place in the tangent

space:

δχR = [δpT , δqT , δvT , δbg
T , δba

T ]T (2)
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Fig. 2. Deployment methods of the Stereo Rig (a) hand-held (b) on a single DPV, (c) on dual DPV.
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Fig. 3. Overview of the proposed approach. In yellow are the sensor
feeds and their frequency; in green the OKVIS [2] components; in blue the
components introduced to handle acoustic and depth data, underwater visual
effects, and loop closure.

C. Tightly-coupled SLAM system using Sonar, visual, iner-

tial, and pressure sensor

As shown in Fig. 3, we augmented OKVIS [2], a state-

of-the-art open-source visual-inertial package to combine

acoustic and depth information. In [22], we introduce a two-

step refinement of the scale at the initialization: we refine

the initial scale factor from the stereo camera using depth

measurements, which is further refined by aligning the IMU

measurements with stereo vision.

The cost function J(x) for the tightly-coupled non-linear

optimization includes the IMU error es, the reprojection error

er, the depth error eu and the sonar error et, :

J(x) =

2∑

i=1

K∑

k=1

∑

j∈J (i,k)

ei,j,k
T

r Pk
rei,j,kr +

K−1∑

k=1

ek
T

s Pk
seks

+

K−1∑

k=1

ek
T

t Pk
t ekt +

K−1∑

k=1

ek
T

u P k
u e

k
u (3)

with i denoting the camera index – i = 1 for left, i = 2 for

right camera used in a stereo camera – and the landmark

index j observed in the kth camera frame. Pk
r , Pk

s , P k
u ,

and Pk
t denote the information matrix of visual landmarks,

IMU, depth, and sonar range measurement for the kth frame

respectively.

The reprojection error is calculated based on the difference

between a keypoint measurement in the camera coordinate

frame C and the corresponding landmark back-projection

based on the stereo projection model. The IMU error term

combines all the accelerometer and gyroscope measurements

utilizing the IMU pre-integration approach described by

Forster et al. [27] between successive camera frames and

represents the pose, speed, and bias error between the

prediction based on the previous and the current states. Both

the reprojection error and the IMU error term follow the

formulation described by Leutenegger et al. [2].

The sonar range error, introduced in our previous work

[21], represents the difference between the 3D point that

can be derived from the range measurement and a corre-

sponding visual feature in 3D. In poor visibility and low

contrast environment where vision fails to detect features,

Sonar provides additional features and helps in mapping the

surroundings. The depth error term can be calculated as the

difference between the rig position along the z direction and

the water depth measurement provided by a pressure sensor.

Depth values are extracted along the gravity direction which

is aligned with the z of the world W – observable due to the

tightly coupled IMU integration. This can correct the position

of the robot along the z axis. For the detailed formulation

of the above error terms, please refer to our previous work

[21], [22].

Ceres Solver nonlinear optimization framework [28] opti-

mizes J(x) then to estimate the state of the system.

Loop-closing and relocalization is achieved using the

binary bag-of-words place recognition module DBoW2 [29].

A pose-graph maintains the connections between keyframes

where a node represents a keyframe and an edge between

two keyframes exists if there is sufficient overlap between

them. With every new frame in the local window, the loop-

closing module searches for loop candidates in the BoW

database. When a candidate is found with enough match,

feature correspondences are obtained to establish connection

between the current frame and the loop candidate frame.

Then, a PnP RANSAC is performed to obtain the geometric

validation. The relocalization module is responsible for align-

ing the current keyframe pose in the local window with the

loop candidate keyframe by sending the drift in pose to the

windowed sonar-visual-inertial-depth optimization thread.

In our contour based reconstruction [30] for underwater

environment, we showed that the cone-of-light created in

the boundary of the light and dark area due to the lighting

variations and the prominent edges in the scene help in

denser 3D reconstruction. Therefore, we employ all three

types of features – i.e., tracked features in the local window,
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Fig. 4. Early experiments with vision only mapping of an underwater
cave. (a) Sample image and the reconstruction from the shadow contours
generated by the video light over consecutive frames. (b) Reconstruction of
an eight minute sequence (approximately 240m) through a cave in Sistema
Camillo, Mexico.

Sonar, and contour features in our tightly couple formulation.

The steps involve: 1) computing adaptive thresholding based

on the histogram analysis for the light and dark areas; 2) edge

detection and filtering to retain the larger continuous con-

tours, and 3) lastly finding the stereo matches of the contour

features. Because of the lighting variation and shadow, using

direct or indirect method for contour tracking could lead to

incorrect estimation and even tracking failure. As such, we

used only stereo projection for the matched contour features

which is followed by a local bundle adjustment (BA). Please

refer to our paper [31] for the details.

IV. RESULTS

Our method shows robust state estimation in challenging

underwater environments. We report few examples in caves

and caverns, characterized by complete absence of natural

light.

Fig. 4 shows the early attempts for underwater cave recon-

struction where we exploited the cone-of-light to reconstruct

the cave wall using only stereo vision [30]. The point clouds

from the individual frames are aligned with the odometry

from ORB-SLAM2 [32] offline to generate the 240m long

trajectory in Mexico underwater cave.

The reconstruction result from the full integrated system,

with loop closure and semi-dense reconstruction in an un-

derwater cavern in Ginnie Springs (FL) covering a 59m
trajectory is shown in Fig. 5. The data has been collected

by a diver with the sensor suite described in the previous

section. As there is no available ground truth, we considered

loop-closure as a metric of performance evaluation. The

system is capable of effectively detecting the loop even if the

environment presents self-similarities. In our previous work,

we also compared the results with OKVIS [2], VINS-Mono

[18], and MSCKF [33] for the validation of our method in

the standard datasets as well as in the underwater datasets;

please see [22].

V. DISCUSSIONS AND FUTURE WORKS

An interesting line of future work is increasing the field-

of-view (fov) of cameras for 3D reconstruction. This could

be done by separating the cameras from stereo setup and

arranging them in such a way so that each points away from

the other to the opposite directions. This setup could help

to perceive a lot of parallax for 3D reconstruction without

affecting the scale as it can be disambiguated by depth and

IMU. In addition, the placement of multiple video lights

would also help to provide enough light for each camera.

Increasing the number of cameras also could assist for this

purpose. As such, in the next iteration of our sensor suite,

we will investigate the optimal setup of cameras and video

lights with the available on-board computational resources

to perform real-time operations.

In this work, we used a mechanical scanning profiling

sonar for range information by scanning over a plane. Com-

bining imaging sonar with visual-inertial odometry is another

interesting area worth exploring which could lead to several

interesting applications based on acoustic information.

In the future, we plan to achieve ground truth of the

collected data by placing AprilTags along the trajectory [34]

for the assessment of our approach. Currently, to validate the

loop-closure module we compare our method with original

OKVIS along with other state-of-the-art SLAM packages

in the benchmark datasets where ground truth is available

[22]. For the underwater datasets, as there is no available

ground truth, we rely on the information from the divers or

measuring tape for a rough estimation of the trajectory. We

also compared the performances of state-of-the-art SLAM

packages in the underwater datasets where most of them fail

to track or introduce large drifts in the trajectory over time

[22], [19] but our approach successfully tracks.

VI. CONCLUSIONS

In this paper, we presented an underwater SLAM system

fusing acoustic, visual, inertial, and depth information ca-

pable of running real-time on the available computational

resource of a custom-made sensor suite. The visual inertial

state estimation package, OKVIS has been extended to

handle acoustic and depth data, and it was augmented with

loop-closing capabilities.

During different field deployments using the sensor suite,

it is clear that the turbidity of the water and the coloration

of the cave walls have a major effect in the suitability of

a vision-based state estimation approach. Fig. 6 illustrates

the difference in two deployments occurred in Florida, USA.

In Fig. 6(a), the waters are clear as the cave is the outlet

of a spring. In addition, the walls are light-colored, almost

white, as such the video light illuminates the walls in some

distance; even with an over-exposed spot in the middle. In

contrast, the same video light used in Turner Sink (Fig. 6(b))
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Fig. 5. (a) Cave environment, Ballroom, Ginnie Springs, FL, USA, with a loop (b) trajectory from tightly coupled Sonar-visual-inertial-depth framework
with loop-closing – where the diver started and stopped data collection at the same place (c) contour based reconstruction, red denotes Sonar features and
white denotes stereo contour matched features.

barely illuminates the wall next to the sensor, and the light

diffuses in the water. The main difference is that the walls in

this cave are covered by some micro-organisms and have a

dark coloration; in addition the water turbidity is rather high.

Stronger and/or additional lights are required for mapping

such caves.

The proposed method has been also deployed on an

autonomous underwater vehicle (AUV), Aqua2 for real-

time navigation which validates the robustness and improved

accuracy of the estimated odometry; see Fig. 7 for an initial

deployment of the Aqua2 vehicle at the Blue Grotto cavern

in FL, USA. The limited field of view of the AUV poses

a major challenge for the detection of obstacles especially

in an enclosed environment, such as a cave. The current

work is expected to open the door for a variety of planning

and control related research of AUVs and remotely operated

vehicles (ROVs) underwater.
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