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Abstract—Typically, underwater model-based image color cor-
rection requires depth information to properly enhance raw
images, based on heuristic estimates, such as dark prior. Vision-
based state estimation systems – such as ORB-SLAM – together
with single beam sonar can provide a more accurate estimate
for image color correction methods, resulting in a synergistic
improvement on state estimation and color correction. This
paper discusses the mutual relationship of SLAM and image
enhancement in underwater environments for low-cost Remotely
Operate Vehicles (ROVs) and Autonomous Underwater Vehicles
(AUVs).

Index Terms—underwater SLAM, image color correction

I. INTRODUCTION

From archaeology to biology, underwater exploration is
fundamental for preservation and new discoveries, and it will
advance with the technological progress of autonomous un-
derwater robotic systems. One of the main challenges includes
visual underwater perception. In particular, considering low-
cost Remotely Operated Vehicles (ROVs) and Autonomous
Underwater Vehicles (AUVs), whose sensor configurations
are typically composed of Inertial Measurement Unit (IMU),
compass, depth sensor, single-beam sonar, and monocular
camera.

This paper discusses how underwater perception for Simul-
taneous Localization and Mapping (SLAM) problem can be
more effective and reliable using an inexpensive monocular
camera and a single-beam sonar on a low-cost ROV.

State-of-the-art real-time visual SLAM algorithms take raw
images as input, extract features from each image, and track
them over subsequent frames to then estimate pose and 3D
points. While high accuracy have been demonstrated with
Inertial Measurement Units (IMU) – typically high-end, in the
underwater domain – and stereo cameras, low-cost vehicles
are still far from being robust enough to enable autonomous
operation.

Indeed, distortions, blurriness, and color degradation are
more prevalent features in underwater images compared to
images taken above the surface. These optical properties seen
in the images are characterized by the dynamic phenomena in
the bodies of water, considering the season, the weather, and
the quality of marine life [1]. As light propagates underwater,
it interacts with suspended particles, causing a proportion of
rays of light to be absorbed or scattered. The combined effects
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Fig. 1: Given a monocular camera and an echo sounder
mounted on a low-cost ROV (BlueROV2 in our lab), how can
color correction and a SLAM system be improved?

of absorption and scattering is called attenuation. While there
has been extensive research in underwater image formation
models, they heavily depend on the current scene information,
such as distance to the objects (depth), which is difficult to
estimate.

Starting from our previous work [2], this paper presents how
data from a single beam sonar and a monocular camera can
be integrated to mutually improve image feature extraction
in SLAM algorithms, while also reducing depth estimation
error from color enhancement methods – see Fig. 1 for a
depiction of the robot and the problem addressed in this paper.
We discuss early results to highlight the feasibility of our
proposed approach and the immediate next steps to make low-
cost underwater vehicles more autonomous and accessible to
the scientific and industrial communities.

II. BACKGROUND

Much work has been done in solving the problem of SLAM,
starting from filtering-based approaches. The initial research in



SLAM [3] focused on the notion of applying Kalman Filters,
and has been extended to Bayesian filtering and PHD filters
[4], [5]. These algorithms can depend on data either from mo-
tion sensors, video cameras, or imaging sonars [6]. Recently,
feature-based SLAM systems has received more attention for
its real-time applicability. Examples include ORB-SLAM [7]
and OKVIS [8], which are based on keyframes and have been
tested using monocular and stereo cameras. They implement
different feature detection and descriptor methods to extract
image features and find correspondences to the keyframe
features. Our method employs ORB-SLAM as it relies solely
on camera images – a reliable high-frequency IMU, which is
required by OKVIS [8] and VINS [9], is not available on our
robot.

In general, fusing data from more sensors can increase the
quality of the estimate of the algorithms, e.g., using multi-
calibrated cameras [10] and a profiling scanning sonar [11].
As mentioned, low-cost ROVs and AUVs are not equipped
with such costly devices and are usually installed with one
camera and a single-beam echo sounder. However, monocular
SLAM algorithms suffer from scale ambiguity and drift [12].
Additionally, single-beam echo sounders quantify only one
depth measurement at a time.

Many SLAM algorithms assume that the collected images
used for feature extraction are invariant to a certain degree
to changes, e.g., in illumination. While it is possible to
use methods for enhancing images before feeding to SLAM
algorithms, these types of methods do not typically depend
on information from the environment. They use statistics-
based algorithms to estimate parameters and then enhance
the images. These include equalization methods that distribute
pixel values in different color spaces [13]–[15] and methods
that apply filters to eliminate initial noise and post-processing
artifacts [16], [17].

Other color correction methods use the underwater imaging
formation model, which explicitly considers both direct and
the backscatter signal – the light that directly goes from
the object to the camera and the light that scatters due to
particles present in the water before reaching to the camera,
respectively. These approaches are classified as physics-based
methods. However, the depth (distance from the camera to
the object), which is a fundamental parameter in the model,
is infeasible to extract without supplementary sensors. One
way to estimate the depth is by using the dark channel prior
[18] and implementing dehazing algorithms [19]. Then, such a
method can compensate the wavelengths of each RGB chan-
nel, according to the underwater imaging formation model.
Another method is proposed by Lu et al. [20]: a simple prior
is calculated from the difference in attenuation among the
red color channels, which then can be used to estimate the
transmission map and noise filter. Similarly, Carlevaris-Bianco
et al. [21] exploit the attenuation differences between the RGB
channels in water to estimate the depth of the scene, and then
use the underwater imaging formation model to correct the
image.

Last year, Akkaynak and Treibitz [22] proposed an alter-

ation of the underwater imaging formation model, such that the
coefficients for the direct and the backscatter signals are now
different from one another and dependent on environmental
parameters, like water depth, object distance, and water type.
In this paper, we apply this image enhancement method
and assume that the required environmental parameters can
be received from on-board devices, like single-beam echo
sounders, or from extracted features from images processed
by SLAM algorithms.

III. APPROACH

A. Image Color Correction

We apply our recently proposed color correction algorithm
[2]. It is based on the new underwater imaging formation
model, proposed by Akkaynak and Treibitz [22], that assumes
that the attenuation coefficients for backscatter and direct
signal are different. Our system automatically derives the
two attenuation coefficients necessary to solve the imaging
formation model equation, such that images can be color
corrected directly on-board an underwater robot.

Given the unattenuated (corrected) image Jc, the imaging
range z, the wideband veiling light B∞c , and the attenuation
coefficients βDc and βBc for direct signal and backscatter, the
raw image taken by the camera can be expressed by the
underwater imaging formation model as:

Ic = Jce
−βD

c (vD)z +B∞c (1− e−β
B
c (vB)z) (1)

where c represents each of the RGB color channels. Note
that in the new underwater imaging formation model, the
attenuation coefficients depend on vD = [z, ρ, E, Sc, β] and
vB = [E,Sc, b, β], where ρ is the reflectance spectrum of the
object, E is the ambient light, Sc is the spectral response of the
camera, and β = a+b is the beam attenuation coefficient, with
a and b being the beam absorption and scattering coefficient.

Wideband veiling light B∞c is calculated as follows:

B∞c =
1

k

∫ λ2

λ1

Sc(λ)
bcEc(d, λ)

βc
dλ (2)

where k is a scalar directing image exposure and λ is the
wavelength. E(d, λ), the ambient light at a given wavelength
λ, at depth d, is

E(d, λ) = E0
Kd(λ)

d
(3)

where E0 is the ambient light at the surface and Kd is the
diffuse attenuation coefficient. The coefficients a, b, and Kd

depend on the type of water, as defined by Jerlov [23], and
can be derived from the current charts.

We would like to point our interested readers to [2] for a
descriptive analysis of our observations and assumptions for
calculating the wideband veiling light B∞c . In this paper, we
simplify the calculations by assuming the wideband veiling
light to be the average pixel value of the background [15].
This approach is appropriate for diverse water conditions or
when prior knowledge is unreliable.



If Jc is known, in cases when a color chart is utilized, βDc
and βBc can be estimated by taking pixel samples from two
color patches of the same image. In cases where Jc is not
known, the attenuation values can be optimized from previous
experiments. Using these assumptions and estimations, the
unattenuated image Jc can be solved using Equation (1) given
an input image Ic and the corresponding depth values z,
characterizing the distances of the objects in the scene from
the camera.

B. Depth Extraction

Depth measurements can be extracted either from specific
devices, such as echo sounders and imagery sonars, or from
tracked feature points processed by SLAM algorithms. In our
approach, we assume the true depth measurement is captured
by a low-cost single-beam echo sounder and surrounding im-
age features with corresponding depth estimations are handled
by ORB-SLAM [7].

Similar to [24], the echo-sounder can be installed and
directed intentionally for collecting more informative data.
Note that, a typical single-beam echo sounder generates sound
waves and returns the distance measurement of the strongest
returned response. Particularly, the echo-sounder will be posi-
tioned, such that its measurements can be identified by a region
in the images taken by the on-board camera. This assumes that
the echo sounder and the camera are not moving independently
or unknowingly of one another.

Monocular ORB-SLAM [7] is a real-time keyframe-based
SLAM system that handles scene features for mapping, track-
ing, and localization tasks. For our interests, the features
are characterized by pixel points assigned in the grayscale-
converted image and its corresponding depth estimations.
However, depth estimation from monocular SLAM systems
is faulty due to self-drift and scale uncertainty.

Depth measurements from the single-beam echo sounder
can account for this ambiguity. If features detected by the
ORB-SLAM system lie in the region detected by the echo
sounder, their depth measurements can then be altered to
match the measurements read by the physical sensor. The
remaining depth measurements of the features detected by the
system can be adjusted according to some ratio calculated
in the previous step, when converting estimated values to
accurate readings.

C. Design

The camera and echo sounder require to be calibrated
when applying the algorithm in a new environment. This is
especially important for color correction, as the attenuation
values, βDc and βBc , may be different in location or change
over time. One approach is to create a 3D structure that is
characterized by known irregularities that will be detected
by the ORB-SLAM system and then matched with the echo
sounder readings. In addition, the color chart is required for
retrieving prior attenuation values. The two procedures can
be combined by adding the white and black patches from the
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Fig. 2: Overview of the integration of the image color correc-
tion method and the single-beam echo sounder in the ORB
SLAM system.

color chart to the 3D calibration structure. The camera is also
calibrated using Aprilgrid targets [25].

The depth readings from the echo sounder are relatively
accurate, which can then be used to tune the tracked scene
features in ORB-SLAM. The depth reading will continuously
be used as a guiding point, not as a direct ground truth. In
other words, it is an indicator of appropriate estimations. The
resulting feature points and associated depth estimations will
be more informative for the image color correction method.

The diagram in Fig. 2 displays our overall implementa-
tion that integrates with the ORB-SLAM system. The depth
measurements from the single-beam echo sounder will be
integrated in the local mapping when new scene feature points
are created. Afterwards the image color correction method
can apply the feature points and enhance the regions in the
image that are tracked. The corrected images can then be
incorporated back into the tracking step, as a substitute of
the previous raw image frame, which can be described as a
form of back propagation. As a possible example, each color
corrected frame with its corresponding adjusted feature points
will be fed back as a frame or key-frame reference for the
incoming image frames.

IV. PRELIMINARY RESULTS

In this section, we show the fundamental results that will
be used as building blocks for the final system. First, we will
show the results of the image enhancement method applied on
images of a color chart over different depths and distances.
Then, the same image enhancement method is applied to
images processed by the ORB-SLAM system. In the following
section, we will discuss the plans of integrating measurements
from an echo sounder into the image enhancement and SLAM
processes. All experiments and data collection were performed
at different locations in the Caribbean Sea off the coast of
Barbados.

A. Color Chart Verification

To test the application of our image enhancement method,
we deployed the BlueROV2 and used its installed Sony



depth 3.26 m 6.06 m 8.98 m 12.25 m 15.11 m

Raw

Corrected

TABLE I: Image enhancement over depth. First row: Raw images taken by the BlueROV2 in the Caribbean Sea. Second row:
Our image color correction method [2].

Fig. 3: BlueROV2 with color chart attached.

0.33 m 0.98 m

Raw

Corrected

TABLE II: Image enhancement over viewing distance. Images
taken at a depth of around 2m. Left column: color chart
0.33m away. Right column: color chart 0.98m away. First
row: Raw images. Second row: Our image color correction
method [2].

IMX322LQJ-C camera to collect images as it descended down
to 25m. This camera has a resolution of 5 MP, a horizontal
field of view of 80°, and a vertical field of view of 64°1.
An X-Rite ColorChecker was attached to the robot at a set
distance of 0.33m from the camera. Table I displays the
images that were taken by the camera at recorded depths of
3.26m, 6.06m, 8.98m, 12.25m, and 15.11m, as well as the
results of applying our image color correction method. The

1Further technical details can be found at https://www.bluerobotics.com/
store/sensors-sonars-cameras/cameras/cam-usb-low-light-r1/

attenuation values were estimated using the white and black
color patches for each frame, while the wideband veiling light
was calculated using Equation (2).

We also set the color chart at different distances from the
BlueROV2 camera. Table II displays the images of the color
chart set at two distances, 0.33m and 0.98m. Both images
were taken at a depth close to 2m. Fig. 3 illustrates the
experimental setup when the color chart is set at 0.98 m away
from the camera. In this case, as water conditions were poor,
we assumed the veiling light to be the background color.

Comparison results with other image correction methods
will not be described here, but we point the interested reader to
[2] for such supplementary details. The visual results indicate
the strengths of the image formation model, as well as the
reliance on environment factors such as depth and viewing
distance.

B. Depth Estimation using SLAM

Without the knowledge of the distances between the camera
and the scene, the underwater image formation model becomes
infeasible. The image depth can be estimated by feeding
images through the ORB-SLAM system [7]. By slightly mod-
ifying the Monocular implementation to retrieve the estimated
distances of the tracked feature points, we can integrate the
depth estimations in the image formation model.

The method color corrects the pixels in the different patches,
enhancing the color and increasing the contrast of the back-
ground and sand from the reef and fish. Table III displays the
experimental image results. For further examination, please
look at our previous work in [2].

V. DISCUSSION AND FUTURE STEPS

The applied image enhancement method can yield outputs
of better visual quality or with higher color contrast that can
be used for improving SLAM systems performance. Currently,
our proposed method provides clearer and more accurate color
contrast.

In the experiments described above, the depth measurements
from the echo sounder were not integrated into the system. In
the future, depth estimations will be adjusted using the Blue
Robotics Ping Sonar Altimeter and Echosounder, which can be
installed on the BlueROV2. This echo sounder has a frequency
of 115 kHz and a range between 0.5m and 30m, with a

https://www.bluerobotics.com/store/sensors-sonars-cameras/cameras/cam-usb-low-light-r1/
https://www.bluerobotics.com/store/sensors-sonars-cameras/cameras/cam-usb-low-light-r1/


TABLE III: Image enhancement after ORB-SLAM [7] pro-
cessing. Left: Raw. Right: Our image enhancement method
[2], where patches in the image are color corrected according
to the tracked features.

resolution of 0.5%2. It also provides confidence estimations
of its readings, which is helpful when deciding if the readings
should be integrated into the method at each frame.

It will be interesting to quantify the improvement in the state
estimate with the enhanced images. We plan to collect images
over different underwater areas where the visibility condition
is different and apply different color correction techniques.
One possible suggestion for collecting quantitative results is to
compare the number of feature points detected in each frame
between corrected and uncorrected images. We would also
look into the localization accuracy when implementing such a
system.

Note, the depth measurement is incorporated in the color
correction method after feature extraction and then the color
corrected image can be fed back to ORB-SLAM. A pre-
corrected image can be provided to ORB-SLAM using the
initial depth measurement before feeding to the SLAM system.

Currently, the depth measurement provides a single point
around which patches can be extracted to and then color
corrected in the image, as shown in the preliminary results.
Our immediate future work will look at ways to apply that

2Further technical details can be found at https://www.bluerobotics.com/
store/sensors-sonars-cameras/sonar/ping-sonar-r2-rp/

measurement to a neighborhood of points describing the same
object and its estimate pose in the world. Finally, the system
would integrate the color corrected images back into the
SLAM system, hypothetically in the the tracking step as a
form of back propagation. We would like to test the system in
real world environments using two different types of robots,
the BlueROV2, which was used in the preliminary results, and
an Autonomous Surface Vehicle (ASV), custom made in our
lab, coined as the Catabot.

VI. CONCLUSION

We have discussed a new design of mutually improving
a SLAM algorithm and image enhancement method by inte-
grating low-cost sensors, a monocular camera and a single-
beam echo sounder. This paper presents initial experiments
to show the feasibility of this new design and discussion
for future steps. More broadly, effectively using inexpensive
sensors mounted on low-cost ROVs and AUVs will augment
their autonomy increasing their applicability in many fields.
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