
Deep Learning from Shallow Dives:
Sonar Image Generation and Training for Underwater Object Detection

Sejin Lee1 and Byungjae Park2 and Ayoung Kim3

Abstract— Among underwater perceptual sensors, imaging
sonar has been highlighted for its perceptual robustness un-
derwater. The major challenge of imaging sonar, however,
arises from the difficulty in defining visual features despite
limited resolution and high noise levels. Recent developments
in deep learning provide a powerful solution for computer-
vision researches using optical images. Unfortunately, deep
learning-based approaches are not well established for imaging
sonars, mainly due to the scant data in the training phase.
Unlike the abundant publically available terrestrial images,
obtaining underwater images is often costly, and securing
enough underwater images for training is not straightforward.
To tackle this issue, this paper presents a solution to this
field’s lack of data by introducing a novel end-to-end image-
synthesizing method in the training image preparation phase.
The proposed method present image synthesizing scheme to the
images captured by an underwater simulator. Our synthetic
images are based on the sonar imaging models and noisy
characteristics to represent the real data obtained from the sea.
We validate the proposed scheme by training using a simulator
and by testing the simulated images with real underwater sonar
images obtained from a water tank and the sea.

I. INTRODUCTION

In many underwater operations [1, 2, 3, 4, 5, 6, 7],
perceptual object detection and classification are required,
such as search and rescue, evidence search, and defense
missions for military purposes. Bodies of water often present
a critical decrease in visibility due to the high density
of fine floats or aquatic microorganisms [8]. Due to this
limitation of using optical images, imaging sonar has been
a widely accepted solution providing reliable measurements
regardless of the water’s turbidity [9, 10]. Although sonars
extend the perceptual range, the resulting images follow a
different projection model, resulting in less intuitive and
low-resolution images and cannot be easily understood by
human operators. In addition, due to the sensor’s physical
characteristics, a considerable level of noise is generated in
the water image, so it is difficult to ensure the reliability of
sonar image analysis and identification [11].

Early work on sonar image-based classification was aimed
at Automatic Target Recognition (ATR) or sediment classifi-
cation. Low resolution and image ambiguity due to the shad-
owing effect has always been an issue in defining handcrafted
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Fig. 1. Overview of the proposed method. We propose a sonar image
synthesizing for the images generated by a simulator. We trained using
images captured and synthesized from simulator, and tested over real
underwater target detection scenario in water tank and real sea.

features for sonar images. Galceran et al. used multibeam,
forward-looking sonar to detect man-made objects [12]. In
their work, they applied a series of estimation modules to
detect objects. In [13], the authors employed power spectral
analysis methods for seafloor sediment classification. In [14],
the author reported a useful measure for sonar imaging called
lacunarity to classify seafloor characteristics.

Recently, to overcome these challenges, deep-learning-
based approaches have been introduced. Researchers focused
on a partial application. They exploited feature learning by
learning features from the Convolutional Neural Network



(CNN) and then piped the learned feature into another
machine learning algorithm like a Support vector machine
(SVM) [15]. Other researchers used deep learning in a
more end-to-end fashion. In [16], target classification us-
ing synthetic aperture sonar (SAS) images was introduced.
Two target objects were considered in the study, and the
performance of the CNN-based approach was compared to
that of the typical feature-based classifier. Kim et al. also
focused on applying deep learning for vehicle detection using
forward-looking sonar [17]. More recently, [18] reported
thorought analysis on object size, training set size and the
effect of transfer learning. In the aforementioned approaches,
however, the authors collected real sonar images and divided
them into training and test image sets.

When applying deep learning based approaches in under-
water environment, training with real sonar images from
the target environment would be optimal but is highly
challenging in several aspects. First, the underwater imaging
specifically for classification results in a biased dataset.
Second, obtaining underwater images demands time and
effort. Applying deep learning underwater addresses the
major challenge of scanty data. Many efforts have been made
to alleviate the training data shortage. For example, [19]
exploited existing pre-trained weights from in-air images.
They applied fine tuning using sonar images.

A similar strategy to ours recently found in the litera-
ture synthetically generates photo-realistic images. Authors
in [20] examined the synthetic training set generation by
applying a proper background of white noise to the simu-
lated images. This synthetic training image generation was
also thoroughly handled in [21]. The authors evaluated the
Generative Adversarial Network (GAN) to learn underlying
features in an unsupervised manner. They also examined the
effect of style transfer on background and shadow generation
ability.

Differing from those early studies who focused on gener-
ation of images, this paper proposes an end-to-end solution
to prepare a training dataset for underwater object detection
and validating with real underwater sonar images. In Fig. 1,
we present a simulator-based training data generation tool
specifically for underwater sonar images. Our contributions
are as follows:
• We propose a solution to the problem of scanty data in

underwater sonar applications by proposing synthetic
training image generation via style transfer. The pro-
posed method takes one channel depth image from a
simulator to provide various aspects (e.g., scale, orien-
tation and translation) of the captured data.

• We performed a thorough evaluation using real sonar
data from pool and sea trial experiments to validate
the proposed method. Specifically, we present that the
proposed simulation trained network performs equally
well as the real sea data trained network. By doing so,
the proposed training scheme alleviates the training data
issue in underwater sonar imaging studies.

• We also verified the trained network with sample images
from various sonar sensors. The test sonar images are

sampled from video provided by sonar companies. This
validation proves the proposed scheme could be widely
applicable for sonar images captured from various un-
derwater environment. Note that the sonar data used in
testing was never been used in training phase. Therefore,
we suggest elimination of the real-data acquisition phase
in deep learning for underwater application.

II. TRAINING SET GENERATION

In this section, we introduce simulation-created training
data generation for underwater object detection.

A. Base Images Preparation from Simulator

Obtaining real images from the ocean would be ideal, as
reported in [16], where the author collected eight years of
data from marine missions to prepare and test classifications.
However, as reported, data collection in underwater missions
is demanding. To overcome this limitation, we captured a
base image for the synthetic training dataset from a simulated
depth camera in the UWSim [22]. Using a simulator allowed
us to train with various objects by loading a 3D CAD model
of the target objects. By diversifying pose and capturing
altitude, multiple scenes of objects were collected, as shown
in the sample scene in Fig. 1.

The UWSim provides a diverse choice of underwater
sensor modalities, and users may be able to implement their
own sensor module within the simulator [23]. Developing
a detailed sensor module for a specific perceptual sensor
would require careful design of the modules in the simulator
based on the detailed understanding of the sensor and the
environment. However, we found that generating a photo-
realistic image from a rather simple depth image may provide
a feasible solution. Specifically, we proposed using the style
transfer to generate realistic-enough synthetic sonar images
for training, and the simulator only needed to provide a basic
representation of the scene for style transfer to be applied.

As depicted in Fig. 1, using the captured depth image from
the simulator, we applied a colormap in [23] added by white
noise. Then the images were normalized and prepared as a
base image before entering the style transfer phase.

B. Image Synthesizing

Given this base image, we adopted the StyleBankNet
[24] to synthesize the noise characteristics of sonar images
acquired in various underwater environments, such as water
tank and sea. This network simultaneously learns multiple
target styles using an encoder (E), decoder (D), and Style-
Bank (K), which consists of multiple sets of style filters
(Fig. 2). Each set of style filters represents the style of one
underwater environment. In this work, we transfer a given
base image using two different styles, i.e., POOL style and
SEA style. Additionally, we have added a new ATKI loss to
the existing Stylebank to better stylize for sonar images.

1) Losses: There are two different branches in the Style-
BankNet: auto-encoder branch (E → D) and stylizing branch
(E → K → D). The StyleBankNet uses these branches



(a) StyleBankNet architecture

Name Architecture
Encoder c9s2− 32, IN,C64, IN,C128, IN,C256, IN
Decoder TC128, IN, TC64, IN,C32, IN, tc9s2− 3

ith style filters in SB C256, IN,C256, IN

(b) Detailed architecture of encoder, decoder, and style filters in StyleBank

Fig. 2. Network architecture of StyleBankNet. It consists of three modules:
encoder, decoder and StyleBank (SB). c9s2 − 32: 9×9 convolutional
block with 32 filters and stride 2, IN : Instance Normalization, Cn: 3×3
convolutional blocks with n filters and stride 1, TCn: 3×3 transposed
convolutional blocks with n filters with stride 1, and tc9s2 − 3: 9×9
transposed convolutional block with 3 filters and stride 2.

to decouple styles and contents of sonar images. The auto-
encoder branch uses a reconstruction loss to train the encoder
and decoder for generating an output image that is as close
as possible to an input image.

LR(C ,O) = ||O − C ||2 , (1)

where C and O is input and output images, respectively. The
stylizing branch uses a perceptual loss to jointly train the the
encoder, decoder, and StyleBank [25]:

LP(C ,Si ,Oi) = α · Lc(Oi ,Ci)

+ β · Ls(Oi ,Si)

+ γ · Lreg(Oi)

+ δ · Latki(Oi ,Si), (2)

where Si is one of images with ith style. Lc(Oi ,Ci),
Ls(Oi ,Si), Lreg(Oi) and Latki(Oi ,Si) are feature recon-
struction loss, style reconstruction loss, regularization loss,
and average top-k intensity (ATKI) loss, respectively [25].
In this equation, the style reconstruction loss measures the
difference between output and style images in style such as
colors, textures, patterns, etc:

Ls(Oi ,Si) =
∑

l∈{ls}

||G(F l(Oi))−G(F l(Si))||2 , (3)

where F l and G are feature map and Gram matrix [26]
computed from lth layer of VGG-16 layers ls, respectively.

The last term Latki(Oi ,Si) is a ATKI loss. We added it
to the original perceptual loss [25], as the StyleBankNet is
able to learn the unique intensity distribution characteristics
of sonar images. In a sonar image, some parts appear much
brighter than other parts. These brighter parts may contain
objects of interest because sonar signals are reflected by
objects and floors. Although the intensity distribution of the
brighter parts is much different from the global intensity

ATKI lossNo ATKI loss

Style transferred Style transferredSIM

Fig. 3. Effect of ATKI. By considering additional loss from ATKI, the
target object is styled more strongly.

distribution, it is likely to be overlooked when computing the
style reconstruction loss to train the StyleBankNet because
the brighter parts are usually much smaller than other parts.
As a result, the characteristics of the brighter parts are not
learned appropriately. Motivated by the ATKI [27], the ATKI
loss is used to measure the intensity distributions of brighter
parts in output and style images.

Latki(Oi ,Si) =
1

k

k∑
j=1

||OG
[j ]
i − SG

[j ]
i ||

2 , (4)

where OG
[j ]
i and SG

[j ]
i are the jth largest intensity values in

grayscale output and style images, respectively. By applying
the ATKI loss, the unique intensity distributions can be
synthesized by the StyleBankNet.

The effect of ATKI loss is depicted in Fig. 3. When
additionally using the ATKI loss, the target object appears
more clearly and brightly than when not using the loss.

2) Training: The dataset for training the StyleBankNet
consists of a content set, which is composed of base images
and multiple style sets (e.g., pool and sea). Each set contains
object-centered 300 images. A single mini-batch consists of
randomly sampled content images and style images with
style indices. To better examine generalized characteristics
of sonar images, a pair between base and style images
is not fixed in each iteration. A (T + 1)-step alternative
training strategy is employed to ensure a balanced learning
of the encoder, decoder, and StyleBank using two branches
[28]. Parameters of the StyleBankNet is updated in every
T + 1th iteration using the auto-encoder branch; otherwise,
the styling branch is used.

III. APPLICATION TO OBJECT DETECTION

A. CNN Architecture

We used the deep learning toolbox including the Faster
Regions with Convolutional Neural Networks (R-CNN) [29]
model released in Matlab for underwater object detection.
Although the region proposal algorithms such as EdgeBoxes
[30] or Selective Search [31] are typically applied, the use
of these techniques becomes the processing bottleneck in
the older model [32]. Faster R-CNN addresses this issue by
implementing the region proposal mechanism using the CNN
and thereby making region proposal in the CNN training and
prediction steps. For this Region Proposal Network (RPN)
training, the layers were basically set up as follows; Input
layer (32×32×3), 1st Convolution layer (5×5×32), Relu,



(a) Water tank test (POOL) (b) Sea trial (SEA)

Name Environment Description # of Images
SIM UWSim Simulated depth camera 370

SIM-POOL UWSim Water tank styled images 370
SIM-SEA2017 UWSim Sea styled images 370

POOL Water tank Multibeam sonar images 735
SEA2017 Sea Multibeam sonar images 1045
SEA2018 Sea Multibeam sonar images 1935

(c) Our own validation datasets

Fig. 4. Experiment set up for clean water tank (POOL) and real sea data
(SEA). Sonar was mounted either on USV (for POOL) or kayak (for SEA).

MaxPooling (3×3), 2nd Convolution layer (3×3×64), Relu,
MaxPooling(3×3), 3rd Convolution layer(3×3×32), Relu,
MaxPooling(3×3), Fully-connected Layer(200), Relu, Fully-
connected Layer(2), Softmax Layer, Classification layer.

B. Training Image Augmentation

The style transferred image can be directly used for train-
ing, and the synthesized images themselves could be sourced
for many sonar imaging applications. In this application,
we propose a synthesizing scheme generally applicable to
various sonar images. Thus, in this augmentation phase, we
converted the images to grayscale and their inverted image
in the form of general one-channel sonar images. Including
inverted images is critical for sonar images because when an
object is imaged by sonar, the intensity of the object may
be brighter or darker than the background depending on the
relative material property of the object and environment. To
remedy this situation, we generated two types of images from
a single channel synthesized image, as shown in Fig. 1.

For deep learning application, ensuring sufficient diversity
in training datasets is meaningful. When capturing data from
the simulator, physical diversity was considered to include
various rotation, translation, and scaling. Additionally, we
randomly flipped the captured base images. We applied
variations in scale, rotation, and translation for the training
dataset.

IV. EXPERIMENTAL RESULTS

In this section, we provides a series of experiments to
evaluate style transfer performance and its application to
object detection.

A. Datasets

For training, images (SIM) are prepared using the algo-
rithm described in §II. The SIM images are styled targetting
either water tank (SIM-POOL) and sea (SIM-SEA2017)
respectively. Details are summarized in the table in Fig. 4.

POOLSIM

SEA2017 SEA 2018

Fig. 5. Sample raw images from each environment without applying style
transfer. All four sample images contain the target object marked as a green
circle.

For validation, we used our own dataset listed in the
table in Fig. 4(c) together with the publicly available sam-
ple images from sonar companies. When collecting our
own validation dataset, images were captured by imaging
a human-sized dummy using a Teledyne BlueView M900-
90, a multibeam imaging sonar with a 90◦ field of view, 20◦

beam width and 100 m maximum range. Data were collected
from a water tank and from the sea as shown in Fig. 4.

The first dataset, called POOL, was captured in the very
clean water testbed of the Korea Institute of Robot and
Convergence (KIRO). The maximum depth of this water
testbed was approximately 10 m. The dummy was positioned
in a water depth of about 4 m to simulate a submerged body,
as shown in Fig. 4(a). The imaging sonar was mounted
on a USV platform that was capable of rotating the sonar
sensor at an angular interval of 5◦ and enabled collection of
underwater sonar images from various angles. The second
dataset (SEA) was captured in severely turbid water from
Daecheon Beach in Korea. The BlueView M900-90 was fixed
to the lower part of the kayak, as shown in Fig. 4(b), and
the heading direction was mounted at about 30◦ downward
from the water’s surface. In this experiment, the distance
between the sensor and the dummy was about 2 to 4

Fig. 6. Style transferred image samples. Given the depth images captured
from the simulator, we generate color-map changed images. On the third and
fourth column, style transferred images are shown. When style transferred
to the water tank, the images showed a darker background well representing
the actual images captured in the water tank.



Fig. 7. As the epoch evolves, the target object appears more clearly. At
around 100 epoch, the shape of the body clearly shows and background
reveals similar characteristics to the real images.

meters. The SEA dataset was collected twice, and the datasets
were named SEA2017 and SEA2018. Two sea images are
slightly different in style and we named them separately
to avoid confusion. The dataset of POOL, SEA2017 and
SEA2018 has 735, 1045, and 1935 images containing a
submerged body respectively.

Fig. 5 illustrates the sample images captured from each en-
vironment. Images from water tank reveals relatively darker
images than sea trial. The appearance of the target object
change drastically even when captured in the same envi-
ronment depending on the viewpoint and nearby sediment
condition. As can be seen SEA2018 presents a brighter
image than SEA2017 capturing the target object farther than
previous data.

B. Experimental Setup and Evaluation criteria

Style transfer and object detection training was performed
running on one NVIDIA GTX 1080. Adam optimizer was
used. The learning rates were set to 10−3 with an exponential
decay. Weight decay, β1 and β2 were set to 10−5, 0.9 and
0.999, respectively.

We considered detection Intersection Over Union (IOU)
larger than 0.25 as the correct detection. For terrestrial
images, IOU = 0.5 is often used. Considering sonar images
resolution and underwater navigation accuracy, we alleviated
criteria of the detection IOU. We think, however, if the
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Fig. 8. Object detection performance when target environment changes. (a)
the network is trained from simulator-generated images applied with water
tank style, and is tested with real sonar images collected from water tank,
(b) the network is trained from simulator-generated images applied with sea
style and is tested with real sea sonar images.
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Fig. 9. PR curves comparison when the network is trained by im-
ages from the water tank (POOL), style transferred images from the
water tank (styled-POOL), style transferred images from the simulator
(styled-SIM). Baseline result is obtained by training from real sea images
captured in 2017 (SEA2017). All four cases are tested by using real sea
sonar images captured in 2018 (SEA2018).

targeting sonar images are high resolution such as SAS
different IOU can be used as the detection criterion.

C. Style Transfer Performance

We first validated the effect of the style transfer on
performance. By using a style bank, multiple aspects of the
images can be synthesized. Using the base input image from
the simulator, synthetic images were generated for POOL
and SEA2017. The style transferred images are as given in
Fig. 6. As can be seen in the figure, the original color map
images are style transferred to water tank and sea styles. The
style transfer results by epoch are also given in Fig. 7. The
chosen target object evolves to be a cleaner, stronger object
as the epoch increases.

We also validates the performance of the style transfer
when generating and testing for two different target environ-
ments. Using simulator-created images, we style transferred
to water tank style and sea style. Original 370 SIM-POOL
and 370 SIM-SEA2017 were trained with their augmented
images and tested over 735 POOL and 1045 SEA2017 im-
ages. These style transferred images from each environment
were then trained and tested with real data from each case,
as in Fig. 8. Both test cases present training from styled
images resulting in meaningful object detection performance.
Average precision of 0.77 for POOL and 0.63 for SEA2017
are achieved. The Average Precision (AP) when testing in a
water tank is higher than when testing at sea. This is because
the noise induced from the background sediment is lower
when testing in a water tank, as can be seen in sample images
in Fig. 5.

D. Simulation Training Evaluation

If possible, training from the real sea and testing with
real sea images would be ideal. Hence, we use the object



T1 T3 T4 T5 T6 T7
T2

(a) Sample images

Name manufacturer Image # Target object Range [m] Sonar type
T1 Teledyne (P900-45) 5 Diver standing sea floor 5 Multibeam imaging sonar
T2 Teledyne (P900-130) 5 Diver swimming near sea floor 10 Multibeam imaging sonar
T3 Teledyne (P900-45) 5 Diver swimming far 10 Multibeam imaging sonar
T4 Teledyne (P900-45) 5 Diver swimming near 2 Multibeam imaging sonar
T5 SonarTech 10 Diver approaching to sensor 1-25 Multibeam imaging sonar
T6 SonarTech 10 Diver swimming in-Water 10 Multibeam imaging sonar
T7 SonarTech 5 Diver standing sea floor 3 Multibeam imaging sonar

(b) Dataset lists and video sample image description

Fig. 10. Test sonar images captured from company provided sample videos. T1-T4 were sampled from videos available from Teledyne and T5-T7 were
captured from video provided by SonarTech. (a) Sample images from each dataset. (b) Summary of the dataset.

T1

T7T6T5T4

T3

T2

Fig. 11. Test results from sample images captured from video.

detection results trained from SEA2017 and tested them on
SEA2018 as the baseline, considering that this would be
the optimal training method. As can be seen in Fig. 9, the
baseline provides around 0.65 AP when detecting the object.

In comparison to this baseline, we performed object de-
tection from three cases: when trained from a water tank
(735 images from POOL), when trained from stylized images
from a water tank (370 images from SIM-POOL) and when
trained from simulator using style transfer (370 images from
SIM-SEA2017). The precision-recall curve comparison is
provided in Fig. 9. The AP and detection performance
are slightly degraded compared to training from real sea
data. On the other hand, the proposed method elaborated
the simulation-generated images to include characteristics of
the real sea images via style transfer. The resulting object
detection performance is comparable to that of the detection
result when trained with real sea images.

E. Validation to Public Data

Lastly, we verified that the proposed method is applicable
to other types of sonar from two different manufacturers
by testing in the various environments. Again, we trained
the network using the simulator-generated images and by
applying style transfer. As described in Fig. 10, we collected
sample images from various sample videos. These images
contain either a standing or swimming diver at various
ranges. The sample data were collected using different
sensors and from different sediment conditions. An object’s
relative size within an image varies when captured at close
(T4) vs far range (T5). Depending on the viewing angle and
diver’s posture, a strong shadow occurred when the diver was
standing on the sea floor (T1 and T7). When the target is
swimming in water, the ground appears separately, as in T3
and T5.

Sample test results are shown in Fig. 11. Despite the
variety of sample cases, the target object (i.e., diver in the
sea) was successfully detected. One notable case was found
in T5 when a diver approached the sonar starting from 25 m
away from the sensor. As can be seen in the sample and
result cases, only a couple of pixels indicate the object. The
learned network suffered from this subtle information and
detected the object only when the range became closer (less
than 5 m). Also, when the target object was found in multiple
pixels within a short range, the object was found multiple
times when diver motion was greater. The motion could be
highly diverse when the diver was swimming and this level
of ambiguity was well secured by the training. Furthermore,
the trained network was not fooled by other objects such as
rocks or the ground, which also appear as bright objects in
the scene.

V. CONCLUSION

In this paper, we applied CNN-based underwater object
detection from sonar images. The main objective was to
overcome data limitations in the underwater environment by



synthesizing sonar images obtained from a simulator and
testing over sonar images captured in a real underwater
environment. Our results validate that the proposed image
synthesizing mimics real underwater images without actual
performing dives. The proposed training solution is applica-
ble for various target detection by using a 3D model of the
target from the simulator.

ACKNOWLEDGMENT

This work is supported through a grant from MSIP
(No 2015R1C1A2A01052138), IITP grant funded by MSIT
(No.2017-0-00067), and a grant from Endowment Project of
KRISO (PES9390).

Authors are grateful to SonarTech for sharing sample
videos for the research.

REFERENCES

[1] H. Cho, J. Gu, H. Joe, A. Asada, and S.-C. Yu,
“Acoustic beam profile-based rapid underwater object
detection for an imaging sonar.” Journal of Marine
Science and Technology, vol. 20, no. 1, pp. 180–197,
Mar 2015.

[2] M. Purcell, D. Gallo, G. Packard, M. Dennett,
M. Rothenbeck, A. Sherrell, and S. Pascaud, “Use
of remus 6000 auvs in the search for the air france
flight 447,” in Proceedings of the IEEE/MTS OCEANS
Conference and Exhibition, Sept 2011, pp. 1–7.

[3] S. Reed, Y. Petillot, and J. Bell, “An automatic approach
to the detection and extraction of mine features in
sidescan sonar,” IEEE Journal of Oceanic Engineering,
vol. 28, no. 1, pp. 90–105, Jan 2003.

[4] E. O. Belcher and D. C. Lynn, “Acoustic near-video-
quality images for work in turbid water,” Proceedings
of Underwater Intervention, vol. 2000, 2000.

[5] Y. Lee, T. G. Kim, and H. T. Choi, “Preliminary study
on a framework for imaging sonar based underwater
object recognition,” in 2013 10th International Confer-
ence on Ubiquitous Robots and Ambient Intelligence
(URAI), Oct 2013, pp. 517–520.

[6] D. P. Williams and J. Groen, “A fast physics-based,
environmentally adaptive underwater object detection
algorithm,” in Proceedings of the IEEE/MTS OCEANS
Conference and Exhibition, June 2011, pp. 1–7.

[7] E. Galceran, V. Djapic, M. Carreras, and D. P. Williams,
“A real-time underwater object detection algorithm for
multi-beam forward looking sonar,” IFAC Proceedings
Volumes, vol. 45, no. 5, pp. 306–311, 2012.

[8] S. Lee, “Deep learning of submerged body images
from 2d sonar sensor based on convolutional neural
network,” in Underwater Technology (UT), 2017 IEEE,
2017, pp. 1–3.

[9] Y.-S. Shin, Y. Lee, H.-T. Choi, and A. Kim, “Bundle
adjustment from sonar images and SLAM application
for seafloor mapping,” in Proceedings of the IEEE/MTS
OCEANS Conference and Exhibition, Washington, DC,
Oct. 2015, pp. 1–6.

[10] H. Johnnsson, M. Kaess, B. Englot, F. Hover, and
J. J. Leonard, “Imaging sonar-aided navigation for
autonomous underwater harbor surveillance,” in Pro-
ceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2010.

[11] S. M. T. Inc., “Navigator,” 2018. [Online]. Available:
http://www.sharkmarine.com/

[12] E. Galceran, V. Djapic, M. Carreras, and D. P. Williams,
“A real-time underwater object detection algorithm for
multi-beam forward looking sonar,” IFAC Proceedings
Volumes, vol. 45, no. 5, pp. 306 – 311, 2012.

[13] X. Zhou and Y. Chen, “Seafloor sediment classification
based on multibeam sonar data,” Geo-spatial Informa-
tion Science, vol. 7, no. 4, pp. 290–296, 2004.

[14] D. P. Williams, “Fast unsupervised seafloor characteri-
zation in sonar imagery using lacunarity,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 53,
no. 11, pp. 6022–6034, 2015.

[15] P. Zhu, J. Isaacs, B. Fu, and S. Ferrari, “Deep learning
feature extraction for target recognition and classifica-
tion in underwater sonar images,” in Proceedings of the
IEEE Conference on Decision and Control, 2017, pp.
2724–2731.

[16] D. P. Williams, “Underwater target classification in syn-
thetic aperture sonar imagery using deep convolutional
neural networks,” in Proceedings of the International
Conference Pattern Recognition, Dec 2016, pp. 2497–
2502.

[17] J. Kim, H. Cho, J. Pyo, B. Kim, and S.-C. Yu, “The con-
volution neural network based agent vehicle detection
using forward-looking sonar image,” in Proceedings of
the IEEE/MTS OCEANS Conference and Exhibition,
2016, pp. 1–5.

[18] M. Valdenegro-Toro, “Best practices in convolutional
networks for forward-looking sonar image recognition,”
in Proceedings of the IEEE/MTS OCEANS Conference
and Exhibition, 2017, pp. 1–9.

[19] J. McKay, I. Gerg, V. Monga, and R. G. Raj, “What’s
mine is yours: Pretrained CNNs for limited training
sonar ATR,” in Proceedings of the IEEE/MTS OCEANS
Conference and Exhibition, 2017, pp. 1–7.

[20] K. Denos, M. Ravaut, A. Fagette, and H. Lim, “Deep
learning applied to underwater mine warfare,” in Pro-
ceedings of the IEEE/MTS OCEANS Conference and
Exhibition, 2017.

[21] J. L. Chen and J. E. Summers, “Deep neural networks
for learning classification features and generative mod-
els from synthetic aperture sonar big data,” The Journal
of the Acoustical Society of America, vol. 140, 2016.

[22] S. K. Dhurandher, S. Misra, M. S. Obaidat, and
S. Khairwal, “Uwsim: A simulator for underwater sen-
sor networks.” Simulation, vol. 84, no. 7, pp. 327–338,
2008.

[23] D.-H. Gwon, J. Kim, M. H. Kim, H. G. Park, T. Y.
Kim, and A. Kim, “Development of a side scan sonar
module for the underwater simulator,” in Proceedings
of the International Conference on Ubiquitous Robots



and Ambient Intelligence, Jeju, S. Korea, Aug. 2017,
pp. 662–665.

[24] D. Chen, L. Yuan, J. Liao, N. Yu, and G. Hua,
“Stylebank: An explicit representation for neural image
style transfer,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. IEEE
Computer Society, 2017, pp. 2770–2779.

[25] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses
for real-time style transfer and super-resolution,” in
Proceedings of the European Conference on Computer
Vision. Springer, 2016, pp. 694–711.

[26] L. A. Gatys, A. S. Ecker, and M. Bethge,
“A neural algorithm of artistic style,” CoRR,
vol. abs/1508.06576, 2015. [Online]. Available:
http://arxiv.org/abs/1508.06576

[27] Y. Fan, S. Lyu, Y. Ying, and B.-G. Hu, “Learning with
average top-k loss,” in Advances in Neural Information
Processing Systems Conference, Long beach, USA,
Nov. 2017.

[28] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio, “Generative adversarial networks,” in Advances
in Neural Information Processing Systems Conference,
Montreal, CANADA, Nov. 2014.

[29] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn:
towards real-time object detection with region proposal
networks,” IEEE Transactions on Pattern Analysis &
Machine Intelligence, no. 6, pp. 1137–1149, 2017.

[30] C. L. Zitnick and P. Dollár, “Edge boxes: Locating
object proposals from edges,” in European conference
on computer vision, 2014, pp. 391–405.

[31] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W.
Smeulders, “Selective search for object recognition,”
International journal of computer vision, vol. 104,
no. 2, pp. 154–171, 2013.

[32] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp.
1440–1448.


