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Abstract—Underwater images notoriously suffer from excep-
tionally bad imaging conditions. Low light, attenuation, scattering
and refraction-based distortions limit the space of applications
of the underwater machine vision. Although solutions based
on traditional image processing and deep learning have been
proposed, they tend to be unreliable when facing various kinds
of underwater images degraded by different lighting propagation
conditions. The main contribution of this paper is three-fold: 1)
A novel method is proposed to generate underwater-like images.
It utilizes images taken in air and physics-based underwater
image degradation model to create synthetic underwater datasets.
2) Preliminary results on the application of a Generative Ad-
versarial Network architecture for single image haze and blur
removal is reported. It is trained purely on the simulated data, yet
demonstrates good generalization to the real underwater data.
3) A qualitative evaluation of underwater image enhancement
algorithms covering contrast-based methods, advanced image
processing algorithms and recent advances utilizing deep learn-
ing. This benchmarks state-of-the-art methods and outlines the
strong and weak points of each approach.

Index Terms—Underwater vision, haze removal, deep learning,
physics-based vision, simulation

I. INTRODUCTION

Underwater inspection missions are very demanding due
to the hostile environment, lack of key sensors (e.g. GPS)
and poor quality of data. Acoustic sensors work reliably but
provide low resolution, grey scale, noisy data with limited
update rate. Often visual inspection with cameras would be
the best solution, as it provides colour data with high frame
rate and resolution. This is important in tasks such as 3D
reconstruction, manipulation and navigation in tight spaces.
Furthermore images are easily interpreted by humans and there
many algorithms for automated object detection, tracking etc.
Unfortunately, optical underwater imaging suffer from excep-
tionally challenging conditions. There is usually little natural
light and artificial illumination causes significant vignetting
and requires recording in the high range of the intensity of
light - shadows tend to be very dark and reflective surfaces can
get very bright. Furthermore, light is attenuated and scattered
(hazed). Generation of the haze and its influence on the image
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is very similar to the effect that fog has on the images in
air. However, underwater this effect is much stronger, more
common and wavelength dependent. In multiple papers [10],
[17], [18], [21] haze was identified as the main source of
the underwater image degradation and therefore for the best
results of any vision-based tasks, images should be enhanced
to remove the veiling light. A deep learning based method was
proposed to transform in-air images to underwater like [9]. In
this paper a solution based on physicals model is proposed
instead to generate the training dataset.

Underwater image enhancement has been studied in mul-
tiple papers before. Very common approach utilizes contrast
enhancement techniques to reduce the influence of the haze
[3], [23]. Other methods are based on more sophisticated
approaches and often rely on some priors. Most notably, the
Dark Channel Prior (DCP) [5] is known to give good results
in air. Underwater adaptation of this method has also been
proposed [10]. Another haze removal technique, known as
haze lines [1], [2], is based on the assumption that the colour of
the haze is known and no object in the scene is of that colour.
Similarly to the DCP this method gives good results but can
lead to significant image degradation when these assumptions
are not fulfilled.

Finally, there are methods based on deep learning. These
recently gained on popularity, but the success of these methods
in the underwater image correction has been limited. Among
others, [4], [15] have been proposed for haze removal. How-
ever these networks were designed and trained for removing
haze (fog) for in-air images, which may not work for under-
water. In [8] a network was proposed to enhance underwater
images using colour transfer.

II. IMAGE FORMATION MODEL

Common mathematical description of the underwater image
formation was introduced by Jaffe [6] and McGlamery [12]
and is shortly summarized here for the sake of completeness.
The signal forming an image is a sum of three components

ET = Ed + Ef + Eb (1)



Fig. 1. Underwater image formation: the light is attenuated when traveling
through the body of water, leading to the shift in colour. It is also scattered,
causing blur and creating the foggy appearance. (L-light, C-camera)

ET is a total radiance sensed by the camera. Ed is the
direct transmission - attenuated radiance Eo reflected from
the object. Attenuation is caused by the absorption of the
energy by water as well as other particles suspended in
it. Attenuation coefficients depend on the wavelength which
causes the change of colour. This effect gets stronger with
distance as more energy is absorbed through water. Ef is the
forward scatter signal coming from the light reflected from the
object and scattered on its way back to the camera and Eb is
the backscatter caused by the ambient light scattered back to
the camera. All of the components in this sum depend on the
distance r and water parameters:

Ed = Eoe
−cλr (2)

Where c is a total attenuation coefficient. Subscript denotes
that c depends on the wavelength.

Scattering is a physical process where some form of ra-
diation, in this case the light, is forced to deviate from the
straight trajectory. In case of the underwater image formation,
it is relevant in two ways. So called forward scattering occurs,
when the light reflected from the object is scattered on its
way to the camera. Reflected light ray influences the light
rays reflected from the nearby points. This results in an effect
very similar to the Gaussian blur. The main difference is that
it’s not uniform - the strength of the smoothing depends on
the distance. The other effect is usually called backscatter. In
principle this is the same physical phenomenon, only here the
source of scattered light is different. The ambient light coming
from the surface or the artificial lights is scattered. Part of this
light is reflected to the camera. The more ambient light there
is and the bigger the distance, the stronger the backscatter is.

Ef = Ed ∗ gr (3)

Where gr is a point spread function (PSF) and is parameterized
with distance r. Multiple models of the underwater PSF have
been presented in the literature [22].

Eb = Binf(1− e−cλr) (4)

Where Binf is a background signal (a.k.a. global atmospheric
light), i.e., what would be seen if the camera was looking into
open water with no objects in front of it. Similar equations
are true in air, only attenuation and forward scattering are
much less prominent or often negligible. Backscatter may be
quite significant, e.g. in the fog, but it is usually quite uniform.
Underwater Binf can vary significantly, with the rapid changes
of the illumination in the field of view.

III. TRAINING DATASET

Training a deep neural network requires a large amount
of data. Access to ground truth to compare it to the the
output that the network is producing is also necessary. For this
reason using real underwater images is difficult or impossible.
Underwater datasets are very limited, they usually cover rela-
tively small locations and therefore cannot be treated as proper
representation of the full variety of conditions that can be
found underwater. Moreover, images within these datasets tend
to be very similar and therefore may cause over-fitting during
training. For these reasons it was decided to use simulated
images based on the NYU dataset V2 [14]. It’s relatively
big, versatile and, most importantly, includes the ground-
truth depth for each image. This is important for the method
described later on in this section. This dataset was modified
to match the requirements of the underwater domain. First,
an attenuation of colour was simulated. Even though colour
will not be corrected by the neural network it is important
to simulate this effect as well. Shift in hue can cause some
colours, originally different, to look very similar, effectively
reducing the contrast. Colours are attenuated according to the
equation 2. Distance is known thanks to the depth image
corresponding to the RGB image, provided in the NYU
dataset. Once the colours are attenuated, the forward scatter
is simulated by blurring the image with the Gaussian blur
multiple times. It’s equivalent to multiple blurs with increasing
standard deviation of the Gaussian kernel. Then these images
are fused: the further away from the camera, the more blurred
image is used. Finally, the backscatter can be added. Following
the equation 4, the global atmospheric light Binf needs to be
estimated. Underwater this might change significantly in the
field of view and cannot be assumed to be uniform. To estimate
the Binf image two factors need to be considered: colour and
light intensity. The colour of haze is strictly connected to the
attenuation coefficients cλ. Since these are selected randomly,
the colour of the veiling light needs to be derived from these
values. Firstly, the hue of the veiling light is specified: a white
point is attenuated using the equation 2 and cλ. An arbitrary
distance d = 10m is used, as assumed maximum visibility
range underwater. In the next step RGB coordinates of the
attenuated value are transformed to the HSV colour space and
the H channel is stored as the hue of the veiling light. To
get the saturation and value of the global atmospheric light
image, an original image is heavily blurred with a Gaussian
filter. This leaves just the bright and dark regions in the image.
The blurred image is transformed to the HSV colour space
and the H channel is set to the previously found hue. S and V



Fig. 2. Generation of the underwater-like images. Using the depth image the colours are attenuated and blurred. The non-uniform global atmospheric light
is estimated using the input image and the attenuation coefficients.

Fig. 3. Created dataset. For each input image different versions of the underwater haze are created (top row). For each of those, the ground truth image is
also computed (bottom row), so that the training may be focused on haze and blur removal, ignoring the shift in colour.

channels can be scaled for increasing or decreasing the amount
of haze in the final image (this corresponds to increasing or
decreasing the amount of ambient light in the water), compare
Fig. 2). Once the Binf image is specified the veiling light can
be added, following the equation 4.

However, using these images for training with an orig-
inal input image as ground truth, would require not only
to remove haze and increase sharpness, but also to correct
colour. Unfortunately usually there is not enough residual
colour information and therefore this cannot be optimized
accurately. Furthermore, the shift in colour appears (according
to our preliminary tests) as the dominant image degradation
factor in the optimization process, even though it is not the
one that needs to be corrected the most. Therefore additional
steps are performed to produce the ground truth images for
training. Both original and produced, underwater-like, images
are transformed into CIE L*a*b colour space. This separates
the colour and information about the clarity/contrast. Then the

L channel in the simulated underwater image is substituted
with the one coming from the original image. Afterwards it is
converted back to the RGB colour space. This way the image
retains the overall brightness level and colour but it is also fully
dehazed and clear (see Fig. 3). This way a pair of hazed and
ground truth images is created and can be used for training.

IV. PROPOSED SOLUTION

After some initial tests including various architectures
(CNN, GAN, U-Net, ResNet) it was decided to use the GAN
architecture for training. Generator takes a hazy image as an
input and attempts to produce a haze-free version of this
image. Both, hazy and dehazed images are passed to the
discriminator, which processes both and assess, whether the
image was correctly dehazed or not. Discriminator is also
trained on the ground truth pairs of images. Please note that
even though it is a GAN architecture, there is no ”generative”
component to this network. In a way it could be treated as a



case of supervised learning, where the discriminator serves as
an adaptive loss function.

A. Generator

Fig. 4. Architecture of the generator: the classic U-Net architecture was
modified to use residual blocks instead of just convolution layers.

The main task of the generator is to remove blur and haze
from the image. In the case of the underwater images both are
distance dependent their spacial influence on the image can
vary, depending on the patch that is being analysed. Therefore
Features extracted at different scales are important. A U-Net
architecture [16] is known to preform well in such tasks.
Furthermore, the skip connections guarantee that no high-
frequency signal is lost in the processing. This is crucial, as
the goal is not the synthesis of data but image enhancement.
On the other hand, the convolutional networks based on the
residual blocks were shown to perform well in the case
of blur removal [20] and increasing the resolution [7]. We
therefore decided to merge these two, proposing the Residual
U-Net architecture. At the encored part of the standard U-Net
architecture residual blocks are used (compare Fig. 4 and 5).

Fig. 5. Residual block used in the generator.

B. Discriminator

The discriminator has a relatively simple, convolutional ar-
chitecture. Hazy and dehazed images are the two inputs. These
are concatenated and processed through four convolutional
layers. Finally, two fully connected layers are used to produce
the verdict: weather the image was enhanced correctly or not.

V. EXPERIMENTS

The goal of the experiment is to compare the existing
methods and evaluate their performance in a wide range of
conditions. When selecting the methods used in the compari-
son, we ensured, that even though direct comparison between
all available methods is not feasible, the best performing meth-
ods from the following groups were used. First, we included
methods based on contrast enhancement and belonging to
what could be called classic image processing techniques. The
second group contains advanced image processing techniques
using algorithms published recently and especially tailored
to underwater haze removal. Finally, methods based on deep
learning are presented. The last method in the comparison is
the one proposed in this paper:

• CLAHE [23] - contrast limited adaptive histogram equal-
ization - is a very well known method that is commonly
used to enhance contrast in the images.

• Screened Poisson [13] - this method is based on a high
pass filter. It amplifies the high frequencies in the image,
also increasing the visibility of the details.

• UDCP [10] - this method represents a wide range of
methods based on the Dark Channel Prior [5]. The
method selected was modified to work underwater.

• Haze Lines [2] - similarly to the DCP, this method
is based on a colour prior. However, the underlying
assumptions made here are slightly different and do not
rely on the local properties of the image within a given
patch. The underwater version [2] of the original method
[1] was used in the comparison.

• DehazeNet [4] - this algorithm is based on deep learning.
It was developed to remove haze from images taken in
air, which may influence its performance on underwater
datasets.

• MSCNN [15] - another algorithm based on the deep
learning and convolutional neural networks. Both meth-
ods focus on retrieving the transmission map rather than
direct haze removal.

• Our preliminary results.
Results of the experiment are presented in Fig. 6. First of

all it should be appreciated, that, with the exception of the last
one, all images in the dataset were selected to pose a signifi-
cant challenge to the algorithms and therefore the results pre-
sented are highlighting the limitations of the methods. Selected
images have significant shif in colour towards both blue and
green as well as heavy forward and backscatter components.
Image J is, arguably, not hazed and is included to see how each
method performs on the haze-free image and therefore test its
robustness. All of these algorithms could produce much better



Fig. 6. Evaluation of the different methods for underwater single image haze removal. Competing results presented in columns, images come from the following
sources: A and B - used in [10], shared by the authors; C and D - images from the publicly available dataset [19] (https://github.com/Breakend/AquaBoxDataset);
E - image from [18], available on the project’s website (http://webee.technion.ac.il/people/yoav/research/underwater.html); F - image from the underwater caves
sonar data set [11] (https://cirs.udg.edu/caves-dataset/); G and H - images published as test data with the Matlab code of [2]; I and J - images extracted from
one of our datasets. Image J was included as haze free to evaluate the robustness of the compared methods. Viewing with zoom on the screen is recommended.



results on more favourable conditions. However the goal of
this experiment is to evaluate the performance and robustness
of these methods, hence working on worst-case-scenario is
desirable. CLAHE performed surprisingly well, given that
it’s used relatively rarely for underwater haze removal. It
was tuned to enhance the images rather aggressively, which
resulted in good recovery of the details. On the other hand
some artifacts from the tiles used by this method remain in
some images (e.g. Fig. 6, image A). Furthermore it may lead to
amplifying temporary features, like flickering from the surface,
especially when the haze is less prominent (see Fig. 6, image
J).

Screened Poisson also aims at increasing the contrast,
however the results are rather different. The effect is often
much less visible than when using CLAHE. On the other hand
it also never leaves any undesirable effects on the image. The
downside of this method is that it relies on the processing in
the frequency domain and calculation of the Fourier Transform
may limit the speed of processing, depending on the hardware
being used.

UDCP is the only method in this comparison, that (as part
of its processing pipeline) also influences the colour of the
image, hence the results presented here may appear to be
significantly different from other methods. The haze removal is
in this case very aggressive and often leads to very significant
improvement in the images. However it may also lead to
amplification of the noise or compression artifacts in the
image. Finally this method shares the common weaknesses of
the DCP-based methods. It relies heavily on proper estimation
of the global atmospheric light. When this step fails or does
not perform well the image can be significantly altered, to
the point where it looks worse, than the input image. In the
less significant case, this may lead to flickering in the video
stream - see Fig. 6, images C and D. Both images were taken
close to each other, both spatially and in time. Yet the first
one has light purple hue and the second one is rather orange.
This behaviour might be an issue in some cases. It is also
important to mention that this method may require hardware
acceleration to process images in real time, depending on the
resolution of the image.

Haze Lines performed surprisingly poorly on this dataset.
Similarly to the UDCP, this method depends on estimating
light and water parameters. Errors in these estimations could
explain the worse than expected performance observed. The
original implementation published by the authors of this
method was used. With some minor modifications the results
could possibly be improved, but this lies outside the scope of
this paper.

DehazeNet and MSCNN are two methods based on neural
networks selected for this comparison. Even though these
methods are inherently different, they share some background
and performed very similarly. Both networks were developed
and trained for removing haze from the images taken in air.
This is probably the reason for the very poor performance on
the underwater images. Some improvement may be noticed
in the images taken close to the surface or close to the light

source (e.g. Fig. 6, image F). This result also confirms that
even though the basic hazing process is similar in air and
underwater, its magnitude and influence on underwater images
make it significantly more difficult to remove.

The proposed method presented overall good performance.
The improvement was often not as significant of when using
other methods, but it was very consistent across the test set
and never caused unwanted image degradation. Given that this
model was trained purely on the simulated data, it is a very
successful result.

VI. CONCLUSIONS

In this paper three main contributions have been made. A
new method for simulating underwater-like images has been
proposed. Unlike many other methods it takes into account
the forward scatter and non-uniform global atmospheric light.
Base on this, a GAN architecture was trained to remove haze
from the underwater images. Finally, the results of this method
were evaluated in a qualitative tests, involving a wide range or
competing methods using images from different datasets repre-
senting various challenging scenarios. Future work will focus
on tuning the network and training parameters, to improve
the results even further, as well as introducing a quantitative
measures to assess the quality of achieved enhancement.
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